
Pipeline

A Presentation by Team Pipeline

Ben Lai

Brandon Bakhshai

Jeffrey Serio

Somya Vasudevan

What is pipeline
Pipeline is an asynchronous programming language that uses an event-driven

architecture. Pipeline’s event-loop is powered by libuv, the same library used by nodejs

to implement it’s asynchronous architecture. Pipeline uses the idea of a pipe as a kind

of user-friendly asynchronous thread-like interface, which allows the user to write a

block of synchronous statements and execute that block asynchronously from the rest

of the code in the program.

Quick-start guide

Types
Int

Float

String

Struct

Bool

File

Variable Declaration and Assignment
Type ID; or Type ID = expr;

Strings
String supports the following operations:

len(string): returns the length of a given string

cmp(string, string): compare two given strings and returns True when equal and False
otherwise

sub(string1, string2): returns True if string2 is a substring of string1, return False
otherwise

String concat with “$”:

“Hello” $ “ world” = “hello world”

“hello world”

5

false

false

Functions
Function declaration:

Function type ID(formals){stmts}

Function call:

ID(formals)

Structs
The structs in pipeline
are declared and used
the exact same way as
the structs in C. The only
type that cannot be
declared as part of a
struct is the List type,
because List is not a
complete type. Structs
also cannot be declared
and initialized in the
same statement

Struct Definition

struct <struct_name> {
 [statements…]
};

Struct declaration:

struct <struct_name>;
Struct use:

<struct_name>.<struct_variable>
Prints 6

List
Singly linked list operates on the heap.

List decl:

List operations:
addleft , addright, popleft, access,
free_list

File I/O
For file IO a File type is first
declared and then initialized.
Initialization opens a file in a
given mode, to be used for
reading and writing to files.
The supported file
operations are read line from
the file, read n bytes (up to
4095) from the file, and write
a string to the file. After the
user is finished he/she must
use close_file(file_obj) to
close the file.

File declaration:
File f;

File initialization:
init_file_obj(f, file_name, file_mode);

Supported operations:
function string string fread_line(File f);
reads a line from a file and returns a string.
function string freadn(File f, int n);
reads n bytes from the file up to 4095
bytes.
function void fwrite_string(string s, File f);
writes a string to a to the file
function close_file(File f);
closes the file

Control structures
for , while, if, else

Pipes
Pipes are created to enable asynchronous programming using the event-driven architecture.
Ideally the code that is blocking, and the variables dependent on it, go inside a pipe.

Multiple pipes can be created in the program.

Example Program

Routing
Pipeline language supports the following HTTP functions - LISTEN, GET, PUT, POST. All these
functions are supported only inside a pipe.

The Listen function has to go first inside the pipe before anything else, and the rest of the HTTP
functions require LISTEN to be present for them to execute. The listen function takes a string (IP
Address) and an integer (the port number).

The other HTTP functions take “GET”, “POST”, “PUT”, “DELETE” as the 1st argument; the route as the
2nd argument; and the callback function(function name is passed as string) as the 3rd argument.

Examples:

The Pipeline Translator

The Translation Process

Inside the Translator

The Translator
Pipeline Code: C Code:

