
ManiT: A PLT Adventure

ManiT Team

Akiva Dollin - Manager
Irwin Li - Language Guru
Seungmin Lee - Software Architect
Dong Hyeon (Paul) Seo - Tester

Overview

● ManiT is a multipurpose language that compiles into LLVM. The language itself
is based on a series of statements which are executed sequentially.
○ NO NEED TO BOTHER WITH MAIN FUNCTIONS OR HEADER SYNTAX

● ManiT implements partial type inference and allows manipulation of structs and
arrays.

● ManiT has a semi-robust standard library for file manipulation and system calls.

Dev Environment and Tools

● Git and Github
○ https://github.com/akdollin/ManiT

● Vim and Sublime
● VirtualBox and Ubuntu

https://github.com/akdollin/ManiT
https://github.com/akdollin/ManiT

Syntax: Functions, Loops, Partial Infer, Printing

def int foo(int a) {

test = “Hello World”;

counter = 0;

for(counter = 0; counter < 3; counter = counter + 1) {

print(counter);

}

}

Syntax: Structs, Arrays

struct test {

Int a; string b;

};

 struct test structTemp;

 structTemp.a = 4;

A = [1,2,3];

 A[0] = 2;

Syntax: Standard Library

● Files: Write, Open, Close, Put
● System Calls: fork(), execlp(), sleep()
● Helper: len()

Architecture

Compiler Overview

1. Manit.ml: Entry point for ManiT files.
2. Scanner.mll: Reads Characters and tokens.
3. Parser.mly: Creates AST from tokens.
4. Ast.ml: The AST tree.
5. Semant.ml: Checks AST and creates SAST.
6. Sast.ml: The SAST tree.
7. Codegen.ml: Converts SAST into LLVM code.
8. Execeptions.ml: A few error messages. Not a lot. Non-generic flags.
9. /Tests/: All the tests for ManiT.

a. Testing covers all expressions, statements, and types defined by ManiT
b. Total tests: ~80 tests

A Word On The Demo

Our demonstration illustrates what we think are the most important functionalities
of ManiT.

1. Partial Type Inference
2. Structs/Struct Access
3. Fork/Exec/Files/Sleep
4. Loops/Functions

Demo, Let’s GOOO

