

What is Crayon?

- Crayon is a raster-graphics creation language that simplifies the digital
painting of images through code.

- Based on a matrix-layout of RGB pixels -> converted to a ppm file

- Allows artistic expression through mathematical and algorithmic means

Why Pixels?

Rasterization allows the manipulation of each pixel’s color.
On the other hand, vector-images fill in objects with a single color.

Vector images are more scalable, but pixels allow for interesting color
blends and programmer-friendly manipulation!

drawing with vectors

e o

vector-conversions.com ‘

pamtmg with pixels

#
 }

Goals for Crayon

- Transparency: our intuitive Canvas type allows direct manipulation of the
pixels of a ppm (Portable Pixmap) file.

- Familiarity: the syntactic learning curve is low for those that know C;
manipulating RGB values is as easy as using arrays.

- Creativity: by making our language familiar and transparent, developers
can create robust and interesting graphics programs.

50, What is a “(anvas’ Anyway?

1 int main(){

2 :(set the first pixel in the canvas to red :)
3

4 canvas [20,20] g;

5 g[0,0] = [255, @, 0];

6

7 return ©;

8 '}

Essentially, it is a two-dimensional array, with 3-element arrays as
RGB pixels.

50, What is a “(anvas’ Anyway?

The three element integer array (Pixel) represents an RGB value:
E.g. red = (255, 0, 0) in RGB notation =[255, 0, 0] as an element of a

Canvas.
1 int main(){
2 :(set the first pixel in the canvas to red :)
3
4 canvas [20,20] g;
5 g[0,0] = [255, @, 0];
6
7/ return ©;
8 '}

50, What is a “(anvas’ Anyway?

- The Canvas is the exact same size as the ppm file that is generated.

int main(){
:(set the first pixel in the canvas to red :)

canvas [20,20] g;
g[eJe] = [2SSJ 9, 9];

return 9;

O~ O B Wk

In this case 20x20 pixels.

50, What is a “(anvas’ Anyway?

Pixels can be accessed and assigned values quite intuitively.

5 canvas [5,5] g;

6 array int[3] a;

7 array int[3] b;

8

9 gle:8] = [251, 252, 253];
10 g£19:1] = [1: 24 3);

11

12 g[0,0,0] = 0;

13 g[e,1,1] = 0;

Dude, Where's My File?

- Files can be created easily by passing in a Canvas pointer to our writefile

function.
3 int main(){
4 int i;
5 int j;
6 canvas [169,100] g;
7 canvas $ p;
8
9 for(i =9; 1 <100; i =1 + 1) {
10 for(] = @y J «d408; J = g-44) §
. & g[i,j] = [255, @, @];
12 }
13 }
14 p = &g;
15 writefile(p,100,100, "coolimage.ppm");
16 return 0;
17}

Dude, Where's My File?

O 00 N OV B w N

T S S S e I N N =
® VWO NOUBWNERO®

P3

100
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

loe

OO0 0 O OO OO0
OO0 OO0 OO OIPOO®OO®

255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

O 0O 0 0 0O 00O OO
OO0 0 00O OO OOO®

255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

O 0 0 0 0 0 00 000 ® OO O®O®
O 0 0 0 ® 0 9 @ 00O ® 0O ®O®

O 00 0 000000000000
OO0 0 0 0O 00O OO

255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

OO0 0 0 000 OO OO
OO0 0 0 0 00 0000000000

255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255

O 00 00O 0000000
O 00 00O 00O

.[image] (imported)-2.0 (RGB color, 1 layer) 100x100 — GIMP — O X
File Edit Select View |mage Layer Colors Tools Filters Windows Help

= .‘*FMGU.\m‘*&GU\m\|w2100\|\\.‘ﬂlﬂﬂ.\m‘G\mm\|1\00\m\.‘309\.\m‘300mm|400m.\.|5 &
0 s
0

0

oo_\\|
T I T

I N Y A I T T

Ll l ey

px

100 % > image.ppm (108.8 kB)

The computer text version and the human eye version.

A Gentleman’s Guide to Canvas Pointers

5 canvas [20,20] g;
canvas $ ptr;

Declaring the pointer.

7 ptr = &g;

Defining the pointer.

A Gentleman’s Guide to Canvas Pointers

8 glo,0] = [255, o, @];
2 ~ptr = 0;

Dereferencing the pointer.

ptr = @2@ ptr;
~ptr = 2553

Moving the pointer.

Our Types

Primitive types: Non-Primitive types:
Int - Canvas
String - Array
Boolean - Pointer

- Void

Project Plan

- Agile (iterative) development approach

- Lots of new decisions as new problems were encountered (e.g. adding
pointers, not making Pixel a type)

- Informal and formal testing at each stage to ensure complete functioning.

&7.
AT
| A7
a- ""Q“ M
4
AT
Nor

Timeline

Approximate Date Goal Met

February 8 Language Proposal Complete

February 22 Language Reference Manual Complete

March 30 Preliminary Compiler Built (hello_world.cry runs)
April 29 Secondary Compiler Version Built (arrays, Canvas type)
May 8 Final Compiler Version Built (pointers, writefile)

May 9 Standard Library Complete

May 9 System Testing and Debugging Complete

May 10 Final Report Complete

Responsihilities

Name Role/ Responsibilities
Naman Agrawal Manager / compiler front end; semantics
Vaidehi Dalmia Tester / test design; code generation

Ganesh Ravichandran

Language Guru / semantics; code generation

David Smart

System Architect / test design; compiler front end

All

Standard Library Functions

Jesting

- Test suites were run at each stage.

- We adapted test cases from MicroC and added several of our own for
types and standard library functions.

- We adapted the testall.sh script from MicroC for automation.

Architecture Diagram

Scanner

Parser

AST

Thank you! Enjoy the demo!

*Not created with Crayon, but maybe some day!

