


What is Crayon?

- Crayon is a raster-graphics creation language that simplifies the digital
painting of images through code.

- Based on a matrix-layout of RGB pixels -> converted to a ppm file

- Allows artistic expression through mathematical and algorithmic means




Why Pixels?

Rasterization allows the manipulation of each pixel’s color.
On the other hand, vector-images fill in objects with a single color.

Vector images are more scalable, but pixels allow for interesting color
blends and programmer-friendly manipulation!
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Goals for Crayon

- Transparency: our intuitive Canvas type allows direct manipulation of the
pixels of a ppm (Portable Pixmap) file.

- Familiarity: the syntactic learning curve is low for those that know C;
manipulating RGB values is as easy as using arrays.

- Creativity: by making our language familiar and transparent, developers
can create robust and interesting graphics programs.



50, What is a “(anvas’ Anyway?

1 int main(){

2 :( set the first pixel in the canvas to red :)
3

4 canvas [20,20] g;

5 g[0,0] = [255, @, 0];

6

7 return ©;

8 '}

Essentially, it is a two-dimensional array, with 3-element arrays as
RGB pixels.



50, What is a “(anvas’ Anyway?

The three element integer array (Pixel) represents an RGB value:
E.g. red = (255, 0, 0) in RGB notation =[255, 0, 0] as an element of a

Canvas.
1 int main(){
2 :( set the first pixel in the canvas to red :)
3
4 canvas [20,20] g;
5 g[0,0] = [255, @, 0];
6
7/ return ©;
8 '}




50, What is a “(anvas’ Anyway?

- The Canvas is the exact same size as the ppm file that is generated.

int main(){
:( set the first pixel in the canvas to red :)

canvas [20,20] g;
g[eJe] = [2SSJ 9, 9];

return 9;

O~ O B Wk

In this case 20x20 pixels.



50, What is a “(anvas’ Anyway?

Pixels can be accessed and assigned values quite intuitively.

5 canvas [5,5] g;

6 array int[3] a;

7 array int[3] b;

8

9 gle:8] = [251, 252, 253];
10 g£19:1] = [1: 24 3);

11

12 g[0,0,0] = 0;

13 g[e,1,1] = 0;




Dude, Where's My File?

- Files can be created easily by passing in a Canvas pointer to our writefile

function.
3 int main(){
4 int i;
5 int j;
6 canvas [169,100] g;
7 canvas $ p;
8
9 for(i =9; 1 <100; i =1 + 1) {
10 for(] = @y J «d408; J = g-44) §
. & g[i,j] = [255, @, @];
12 }
13 }
14 p = &g;
15 writefile(p,100,100, "coolimage.ppm");
16 return 0;
17}




Dude, Where's My File?
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The computer text version and the human eye version.




A Gentleman’s Guide to Canvas Pointers

5 canvas [20,20] g;
canvas $ ptr;

Declaring the pointer.

7 ptr = &g;

Defining the pointer.



A Gentleman’s Guide to Canvas Pointers

8 glo,0] = [255, o, @];
2 ~ptr = 0;

Dereferencing the pointer.

ptr = @2@ ptr;
~ptr = 2553

Moving the pointer.



Our Types

Primitive types: Non-Primitive types:
Int - Canvas
String - Array
Boolean - Pointer

- Void



Project Plan

- Agile (iterative) development approach

- Lots of new decisions as new problems were encountered (e.g. adding
pointers, not making Pixel a type)

- Informal and formal testing at each stage to ensure complete functioning.
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Timeline

Approximate Date Goal Met

February 8 Language Proposal Complete

February 22 Language Reference Manual Complete

March 30 Preliminary Compiler Built (hello_world.cry runs)
April 29 Secondary Compiler Version Built (arrays, Canvas type)
May 8 Final Compiler Version Built (pointers, writefile)

May 9 Standard Library Complete

May 9 System Testing and Debugging Complete

May 10 Final Report Complete




Responsihilities

Name Role/ Responsibilities
Naman Agrawal Manager / compiler front end; semantics
Vaidehi Dalmia Tester / test design; code generation

Ganesh Ravichandran

Language Guru / semantics; code generation

David Smart

System Architect / test design; compiler front end

All

Standard Library Functions




Jesting

- Test suites were run at each stage.

- We adapted test cases from MicroC and added several of our own for
types and standard library functions.

- We adapted the testall.sh script from MicroC for automation.



Architecture Diagram

Scanner

Parser

AST




Thank you! Enjoy the demo!

*Not created with Crayon, but maybe some day!



