WARHOL

Martina Atabong Charvinia Neblett Sarina Xie
Manager Language Guru Compiler Architect
maa2247 cdn2118 sx2166

Samuel Nnodim Catherine Wes
Develop Environment Architect Tester
son2105 ciw2109

1 Introduction

Warhol is a functional programming language that allows the user to easily manipulate
images. Images are uploaded from files and parsed into a matrix capable of holding the
original pixel information. The goal of our language is to make it very easy for users to
manipulate images, inspired by many of the functionalities of Photoshop. The user will
upload an image locally and is able to change the image by implementing a number of
built-in functions or supported action. Key features include:

» Image Replication
Image Color Filtering
Image
Sharpening and Blurring
Size manipulation

YV V V V V

Isolated Color Filter

2 Language

The Warhol compiler will be written completely in OCaml, and compiled with LLVM. The
structure of the language is function with an emphasis on our main primitive type —
matrix. The dynamic use of a matrix, designed to store integer tuples, allows Warhol to
do frequent writes, reads, and pixel manipulation.

The language is syntactically similar to Java with inspiration for matrix manipulation
from Matlab, and libraries similar to C. Built-in functions are provided to compute
commonly used image algorithms while also giving users freedom to implement
functions.



Syntax

Comments

Comments using open and closed #’s will denote a section commented out.
Ex: #open comment ....... close comment#

Data Types

a. Pixel

Declaration: pix test(R, G, B)
Access: test(index); #index is O for Red, 1 for Green, and 2 for Blue#
Note: Default value is O if not a complete tuple
b. Matrix
Declaration: mat test=[12 62 93 -8 22; 16 287 43 91; -4 17 -72 95 6];
test =
12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6
Access: mat newTest = test(0:1;2:4);
newTest =
93 -8 22
87 43 91
Note: All matrices must be rectangular
c. Integer
Declaration: int test = 4;
d. Booleans
Declaration: bool test = true;

Function Declaration
Declaration: fun test (a, b, c) = {code inside the function};

Relational Operators

a. is-equal-to:

expression_a == expression_b
b. is-less-than:

expression_a < expression_b
c. is-greater-than:

expression_a > expression_b
d. is-not-equal-to:

expression_a != expression_b
e. is-less-than-or-equal-to:

expression_a <= expression_b
f. is-greater-than-or-equal-to:

expression_a >= expression_b



3.5 Boolean Operators

a. OR:||
b. AND: &&
c. NOT:!

3.6 Mathematical Operators

Add : expression _a + expression _b

Subtract: int_a - expression_b

Divide: expression_a / expression_b

Multiply: expression_a * expression_b

Note: all integer operations, matrix follows matrix multiplication,
pixel is only valid for adding and subtracting RGB respectively

® o0 o

3.7  Built-in functions

read() - Read/upload an image

save() - Save an image

filter() - Filter image

reverse() — Reverse matrix (for flip)
replicate() — Replicate image function
display() - Submit input function for display

me e o

3.8 Reserved Words
a. Boolean literals: true false
b. types: pix, mat, int, save, read

3.9 Control Flow
a. For and while loops for iterating
b. If, else if, and else statements

3.10 Miscellaneous
a. Whitespace is ignored
b. Statements are concluded by semi-colons

4  Example Code

4.1 Read, Replicate, and Display Image

mat image = read(‘picture.ppm’); #read in an image into a matrix#
mat image2 = replicate(image,[3;5]); #replicate the image 15 times in a 3x5 matrix#
save(image2); #displays the replicated image on a new page#

4.2 Filter

mat image = read(‘picture.ppm’); #read in an image into a matrix#
filter(image, (R,G,B), opacity); #built in filter image function#




4.3

4.4

Horizontal Flip

mat image = read(‘picture.ppm’);

mat flippedimg;

for (i = 0; iknumrow(image)-1; i++) {
row = image(i:i+1);
newRow = reverse(row);
flippedimg = flippedimg + newRow;

Vertical Flip

mat image = read(‘picture.ppm’);
mat flippedimg;
for (i = 0; iknumcol(image)-1; i++) {
col = image(i:i+1);
newCow = reverse(col);
flippedimg = flippedimg + newRow;




