&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

COMS 4115 Programming Language & Translator

Project Proposal

TuSimple — An Easy Graph Language

Manager: Jihao Zhang(jz2791)
Language Guru: Zicheng Xu(zx2197)
System Architect: Shen Zhu(sz2609)
Tester 1: Ziy1 Mu(zm2263)

Tester 2: Yunzi Chai(yc3228)

TABLE OF CONTENTS

1. INtroductionccoiieiiiiiiiinininiiiienrr e
2. Language Featurescccooviiiiiinnmiiiiiiiinnieinnnnessnnecnsssneesssnes
2.1. Simple Graph Syntaxcccoovveereeeiiiiiissnnneeeeniicinnnneeeeenn.
2.2. Graph Algorithm........cccovvivininnniiiiiiiiiiinnnnieeniicneeeeeeenn.
2.3. Graph Renderingcccccoeevvuunnreeiiiiiisinnnnneecniicinnnnneeeeenn
3. Language Design and Syntaxccccccveiiieiiiiiinnieiiiinnnneninnneennn,
R R 071111 1175) 11 £
R IV (G A 1) (s RN
3.3, OPerator....ccuiiiiiiiiiiiiiiiiiicnii e

3.4. Built-in functionsS....ccccceiveiieiieiiiceinieiieeireereeeneeeseeessenenes

1. INTRODUCTION

The TuSimple language is a programming language which makes coding graphs as simple as drawing
graphs on paper. It provides a more intuitive way of creating and manipulating graph. With the help of real-
time rendering, construction and manipulation of graphs becomes really easy.

Another design principle is to simplify the expression of graph according to its mathematical definition. In
other words, user of TuSimple would be able to implement graph algorithms directly from those pseudo
code in textbooks(e.g. Introduction to Algorithms). By eliminating the details, user could be more focus on
mathematical thoughts in essence, which would definitely improve the efficiency.

2. LANGUAGE FEATURES

2.1. SIMPLE GRAPH SYNTAX

Using TuSimple, you can create and modify every part of the graph in a simple sentence. Writing code in
TuSimple is like painting on paper, every single operation is fluent and natural. You can pour out your ideas
inside your brain without transformation.

2.2. GRAPH ALGORITHM

The design principle of TuSimple is to simplify the implementation of graph algorithms. With the help of
built-in functions, you can write complicated algorithms in a few line of code. Different from using STL as
blackbox, TuSimple show user all the internal details. It could accommodate to different conditions with
small modification made by user.

2.3. GRAPH RENDERING

We developed this language in order to make graph drawing simpler, so TuSimple is capable of plotting
graph. By using the plot function, users could draw their graphs easily. And TuSimple will handle the
details of graph drawing and draw the graph using the NetworkX library.

3. LANGUAGE DESIGN AND SYNTAX

3.1. COMMENTS

Syntax Comment Style

/* Multiline comment

some comments

*/

/ Single line comment

3.2. KEYWORDS

Keyword | Definition

int Defines an integer

float Defines a float

bool Defines an expression which can only be true or false

string Defines a sequence of characters

list Defines a sequence of data in same type

set Defines a set of data in same type, which can not be duplicated

node Defines a point in the graph. Each has its own value and can be linked to other nodes.
map Defines a hash table with provided values

graph Defines a set of nodes

If else Used as if (expression) {/*statements*/} else (expression) {/*statements*/}
for Uses as for (initialization, termination, increment)

while Used as while (expression) {/*statements*/}

continue | Used as a jump to next loop

break Used as a break of current loop

return Used as the end of function

NULL Defines the value of non-existing value

print

Print the target value to the console

3.3. OPERATOR

Name Operator int/float/bool string list/set/map node
PLUS + add Connect two | Add new element /
string

MINUS - substract / / /

MULTIPLY * multiply / / /

DIVIDE / divide / / /

ASSIGN = Set the left Set the left Set the left Set the left

variable with the variable with | variable with the | variable with
value of right side the value of | value of right side | the value of
right side right side
EQUAL == Compare the value | Compare the Compare the Compare the
string string string

AND && Calculate using | Calculate using / /
boolean value boolean value

OR I Calculate using | Calculate using / /
boolean value boolean value

NOT ! Calculate using | Calculate using / /
boolean value boolean value

GT > Compare the value / / /

LT < Compare the value / / /

GE >= Compare the value / / /

LE <= Compare the value / / /
LINK -> / / / Link current
node to another
DI-LINK -- / / / Link both
nodes to each
other
NEXT ++ Add value by 1 / Move to the next /
element
BRACE {} / / Take value from /
set
BRACKET [/ Take character | Take value from /
with index list
PARENTH 0 / / Take value from /

map

3.4. BUILT-IN FUNCTIONS

Public Function

Name Signature Description

max min(T a, T b) Return the major value

min max(T a, T b) Return the minor value
API of node(node a)

Name Signature Description

value a.v The values of node

begin a Begin of the linked-node list
API of set(set a(T))

Name Signature Description

minimum a.min Return the minimum value

maximum a.max Return the maximum value

API of map(map a(T1, T2))

Name Signature Description

minimum a.min Take the pair with the minimum value in the digital
dimension

maximum a.max Take the pair with the maximum value in the digital
dimension

node a.node Take the node values from a map

value a.v Take the digital values from a map

fill afill(T1) Assign the nodes/values in every pair with given one

a.fill(T2)

afill(T1, T2)

delete a.del(T1) Delete the pair with target node/value
a.del(T2)
a.del(T3)

a.del(T1, T2)

delete all a.del all Delete all the data

API of graph(graph a(set b))

Name Signature Description

plot a.plot Draw the graph

4. CODE EXAMPLES:

4.1. DIJKSTRA’S ALGORITHM
// build the map

map distant(node,int);

node a,b,c.d;
a->b=7,;
b->c=5;
c->d=4;
d->a=1;

distant += {a,b,c.d};
distant.fill(maxint);
// execute the algorithm
list queue(node);
map visited(node,bool);
node n;
queue += a;
while (queue!=NULL){
visited[queue] = true;
for (node i=queue;i!=NULL;i++){
if (distant[i]==null || distant[i]<distant[queue]+queue->1){

distant[i] = distant[queue]+queue->i;

}

queuett;

queue += (distant.del(visited)).min.node;

4.2. MAX FLOW

// build the map

node a,b,c.d;
a->b->a={7l1};
a->{c,d} ={1,3};
a--e=3;

start = a;

end =d;

map distant(node,int);
// execute the algorithm
bool BFS(){

distant.del all;

list queue(node);
queue += start;
while (queue!=NULL){
for (node i=queue;i!=NULL;i++){
if (distant[i]==NULL){
distant[i] = distant[queue]+1;

queue +=i;

}

queuett;

}

return distant[end];
}
int find(node x, int lim){
if (x==end) return lim;
for (node i=x;i!=NULL;i++){
if (x->1> 0 && distant[i]==distant[x]+1 && int tmp = find(i, min(lim, x->1))){
X->1 -= tmp;
i->x += tmp;

return tmp;

return 0O;

H
int ans = 0;

while (BFS()){

while (flow=find(start,maxint)) ans += flow;

