
THEATR 
An actor based language 

 
Group members: 
Beatrix Carroll (bac2108) 
Suraj Keshri (skk2142) 
Michael Lin (mbl2109) 
Linda Ortega Cordoves (lo2258) 
 

Goal 
Create an actor-based language with fault-tolerance that simulates the logic of Erlang and the 
syntax of Scala in the Akka framework.  

Motivation 
The actor model provides a good framework for reasoning about concurrency and 

distributed systems. The model elegantly handles concurrency issues which can be complex 
when implemented in a thread-based model, such as locking and mutual access to resources. 
Instead of multiple threads accessing a shared resource, the actor model relies on autonomous 
actors performing asynchronous and independent computations.  

 
Distributed systems requires comprehensive and secure communication capabilities with 

its various remote processors. To achieve this, distributed systems require that processors 
communicate via messages and that these messages be asynchronous. In the actor model, 
actors communicate with each other exclusively through messages, which are stored in 
mailboxes and processed asynchronously.  

Description 
We wish to create a programming language that implements the Actor Model with 

fault-tolerance. 
 
As the Actor Model specifies, Actors will be the basic unit of computation in our 

language. Upon receiving a message, any actor will be able to only perform the following three 
actions: 

1. Create another actor 
2. Send message to another actor 



3. Update the internal state (specify the state in which it will be when it next receives a 
message)  

 
Each actor possesses an internal state. Actors will only be able to communicate with 

each other actors via passing messages. Each message an actor receives will be stored in its 
mailbox and processed asynchronously. 

Programs 
Our language is designed to write programs that take advantage of parallelism. Some examples 
of these types of programs are: chat servers, phone switches, web servers, message queues, 
and web crawlers. Our language is also designed for programs requiring multiple I/O 
computations, programs requiring strict fault tolerance, and programs requiring strict avoidance 
of deadlocking.  

Language Details 

Notable types 

actor An actor.  Every actor must implement a receive() expression 

int Integer 

char ASCII character (1 byte) 

Float Floating point number 

String Strings  

List[type] Lists can be composed of multiple objects of the same type 

Array[type] Like lists, but represented in memory as a continuous block 

boolean True or false 

tuple Defined as ([type],[type]).  Tuple of two objects. 

Notable keywords and operators 

new To create a new object 

+, -, *, /, % Normal arithmetic operators are supported for integers 



= Assign operator 

== Check for equality operator 

| (Pipe) send message operator - message on the left, recipient on the right 

=> Used for cases in an actor’s receive() clause to choose how to respond to 
messages.  Also used to denote lambda functions 

die Kills the actor 

parent A handle to the actor that created the actor 

print Print to console 

forEach Iterates through a list or array, pass in a lambda function 

main() Entry point to the program 

Common syntax: 
 

int k 

Defines an integer type called “k” 
 

 
List[String] input  

Defines a List of Strings called “input” 

 
 
message findNearestNeighbor(Float datapoint) 

Defines a message object “findNearestNeighbor” that contains a Float type called “datapoint” 

 
 
actor Worker(int id, String name) { 

Float sum = 0.0; 
receive() { 

case findNearestNeighbor(Array[Float] input) => { 
input.forEach(f => sum += f); 

} 
} 

} 



Defines an actor named Worker that takes in an integer “id” and a String “name” to initialize it. 
Every actor must implement a receive() clause, which defines cases for actions upon 
receiving messages.  Within the receive() clause, the syntax: “case [message] => {...}” defines 
the actions taken when a matching message is received. 

 
 
findNearestNeighbor(datapoint) | master;  

Sends a message of type findNearestNeighbor(datapoint) to the master actor. 

 

Example Code: 
For reference and inspiration for the actor model, we used this sample code: 
https://github.com/alexminnaar/ScalaML/tree/master/src/main/scala/ML4S/akka 
 
// defines a message to initiate computation of nearest neighbor 
message findNearestNeighbor(float datapoint)  
 
// defines a TopK message (the result of a Worker’s computation) 
message resultTopK(int id, List[(String, Float)]) 
 
// defines a Worker actor  
actor Worker(int id, List[Array[Float]] inputPartition, List[String] outputPartition,   
int k, (Array[Float], Array[Float]) => Float distanceFn) {  

 
receive() {  

case findNearestNeighbor(Array[Float] input) => {  
// finds nearest neighbor of the datapoint inside this worker’s   
// partition, sends back result as a TopK message to the master  
print("slave ${id} received query");  
//compute similarity of each example  
List[(Float, String)] distances = inputPartition.map(r => distanceFn(r,  

input)); 
// Find top K classes by sorting the list by distance   
List[(String, Float)] topKClasses = distances.enumerate.sort((idx,  

a)=>a).take(k).map((idx, a)=>(outputPartition[idx], a));  
//send message to the parent actor  
TopK(id, topKClasses)| parent();  
print(“slave ${id} finished nearest neighbour”);  

} 
} 

} 
 
// defines a Master actor: splits the computation between Workers and aggregates results  
actor Master(List[Array[Float] input,   

List[String] output,  
int k,  

https://github.com/alexminnaar/ScalaML/tree/master/src/main/scala/ML4S/akka


(Array[Float], Array[Float]) => Float distanceFn,   
int numPartition) {  

 
// create partitions and workers, assign partitions to workers  
List[List[String]] outputPartitions = output.grouped(output.size /numPartitions);  
List[List[Array[Float]]] inputPartitions = input.grouped(input.size / numPartitions);  
print("data partitioned into ${inputPartitions.size} chunks");  
// create slave actors and assign a partition to each  
List[Actors] workers = inputPartitions.enumerate.forEach((idx, inputPartition) => new  

Worker(randomInt(), inputPartition, outputPartitions[idx], k, distanceFn);  
 

 print("Slave actors created");  
 

int slavesNotFinished = numPartitions; // keep track of number of workers finished  
List[(String, Float)]  mergedDistances; // running list of distances  
 
def receive = {  
 

// send start message to workers  
case findNearestNeighbor(float datapoint) => {  

workers.forEach(worker => findNearestNeighbor(datapoint) | worker) }  
 
// receive results from workers and merge into master list to compute  
// the nearest neighbor, print out result  
case resultTopK(int id, List[(String, Float)] output) => {  

print("slave ${id} search results received by master");  
slavesNotFinished -= 1;  
mergedDistances.append(output);  
if (slavesNotFinished == 0) {  

print(“All results completed”);  
List[(String, Float)] overallTopK = mergedDistances.sort(key: (_,  

dist)=>dist)[0:k];  
String pred = overallTopK.groupby((a, _)=>a).map(b=>(b,  

b.size)).sort((_,freq)=>freq)[0][0][0][0];  
 print("Prediction is: ${pred}");  

die(); 
} 

} 
} 

 
Float distanceFunction (Array[Float] a, Array[Float] b) {  

// definition of distance function  
} 
 
// runner code (entry point to program)  
main() { 

int k = 10;  
int numPartitions = 10;  
actor master = new Master(input, inputClasses, k, distanceFunction, numPartitions);  
Array[Float] datapoint = [0.0, 2.3, 4.4]; // sample data for target to find nearest  

neighbors of  
findNearestNeighbor(datapoint) | master;  

} 


