

SAKÉ

S​halva Kohen: sak2232 (​Language Guru​)
A​runavha Chanda: ac3806 (​Manager ​)

K​ai-Zhan Lee: kl2792 (​System Architect​)
E​mma Etherington: ele2116 (​Tester ​)

Introduction:

Behind all models of computation and computer science lies the concept of automata, or Finite State
Machines (FSMs). However, many of the problems that arise in Computer Science Theory are
considered unsolvable, including:

● Reachability
● State Minimization
● Equivalence

We plan to design a language that can manipulate and simulate FSMs, while also answering
complex algorithmic questions such as reachability. Our solution is Saké, the name being derived
from the first letters of our team members: ​S​halva, ​A​runavha, ​K​ai-Zhan, ​E​mma.

Language Description:

Saké is a simple language designed to manipulate, simulate, and perform reachability tests on
concurrent finite state machines (FSM). These include the Deterministic Finite Automata (DFA),
Nondeterministic Finite Automata (NFA), Moore, and Mealy machines. Given a specific input
length or otherwise-specified constraint, the user will be able to test for state reachability in an FSM
system, a single FSM or multiple concurrent FSMs. The user will also be able to simulate an FSM
system on a given input.

Our language is bipartite: it consists the description of the FSM that the user desires to work with -
called “Bottle” - and of the actions that the user wants performed on the FSM, the main Saké code.

The Bottle code may be located either in a file outside of the Sake code or in the same file as the rest
of the code, much like header files in C. Within the Bottle code, the user would also be able to
elaborate on any actions the FSM should perform in a specific state. The user will be able to choose
four modes with which to describe their FSM. The general syntax for all four modes would be the
same. However, there would be small differences in the descriptions. For example, if the user
specifies that they want to write a Moore Machine, they would have to indicate what outputs each
state has. If the user chooses to define a DFA, then they would also have to determine an end state
within that system.

The second aspect of our language focuses on the actions performed on the FSM. This part of our
language will be less descriptive, and more algorithmic. The main function of Saké code is called
fill(). If the names are intuitively tough to understand, remember: ​with Saké, we fill() the Bottle!

General Syntax:

Types:
❖ empty (0 byte)
❖ byte (1 byte)
❖ int (4 byte)
❖ long (8 byte)
❖ float (8 byte)
❖ array (n * sizeof(type) byte)

Macros:
❖ string: #define string(name, value) (char[len(value)] name = value)
❖ char: #define char byte
❖ bool: #define bool byte

Operators:

Operator Description

= Assignment operator

+, -, *, / Arithmetic operators

(), { } Grouping: parentheses for expressions, curly braces for statements

+=, -=, *=, /= Arithmetic assignment operators

. The dot operator

[] Square brackets

&&, ||, ! And, or, not

<, <=, ==, >, => Relational and equality comparisons

Keywords:

Keyword Description

moore, mealy, dfa, nfa The type of FSM

state To define a state of the FSM

start Assigning a start state

depends Adding dependencies for concurrent state machines

input Defining sequence of inputs for FSM

link Defining state transitions

end Assigning an end state

actions Tasks performed in a specific state of the FSM

if, elif, else If-else ladder statements

while While loop

for For loop

continue Restart execution of loop at beginning of scope

break Exit out of loop

return Return statement

import Import an FSM

as Renaming as an alias

ep Epsilon transition for NFA

Comments:
❖ ~ This is a line comment

❖ /~ This is a block comment ~/

FSM Functions:
Functions Description

sim(input) Simulates the given FSM on an input received from standard in. Returns
the output of the FSM

is_reachable(<test state> ,
<constraint>)

Tests for reachability of a given state within a certain number of steps in
an FSM. Returns a boolean. Will return an error if the test state is not
defined in the FSM.

Control flow:
If Statements:

if ​ condition {

/~ code block ~/

}

if ​ condition {
/~ code block ~/

} ​elif ​ {
/~ code block ~/

} ​else ​ {
/~ code block ~/

}

While Loop:

while ​ condition {
/~ code block ~/

}

For Loops:

for ​ s ​in ​ states {
/~ code block ~/

}

for ​ s ​in ​ [start,end,interval] {
/~ code block ~/

}

FSM Declaration:
FSM Declaration:

<fsm_type_keyword> ​ <fsm_name> {
/~

 ~ Specification of input, outputs, states, and

 ~ other fsm properties

 ~/

}

Concurrent FSM Declaration:
<fsm_type_keyword> ​ <fsm_name> ​depends​ <fsm_name> {

/~ fsm specification ~/

}

Concurrent FSM Declaration with Aliasing:
<fsm_type_keyword> ​ <fsm_name> ​depends​ <fsm_name> ​as​ <alias> {

/~ fsm specification ~/

}

Multiple Concurrent FSM Declaration:

<fsm_type_keyword> ​ <fsm_name> ​depends​ <fsm_name>, <fsm_name> {
/~ fsm specification ~/

}

Multiple Concurrent FSM Declaration with Aliasing:
<fsm_type_keyword> ​ <fsm_name> ​depends

<fsm_name> ​as​ <alias>, <fsm_name> ​as​ <alias> {
/~ fsm specification ~/

}

Input/Output Declaration:

input ​ [<input_type> <input_name> , <input_type> <input_name> ,...]
output ​ [<output_type> <output_name> ,...]

State Declaration:
Explicit state declaration:

state ​ <state_name>, <state_name>, ...

Shorthand declaration (start and stop inclusive) :

state ​ <prefix>[<start_number> - <stop_number>]

State Definition :
Moore:

<state_name> (<state_output>, ...) {

/~

 ~ Specification of transitions, and other state properties

 ~/

}

Mealy, DFA, NFA :

<state_name> {

/~ state specification ~/

}

Start State Definition :
start ​ <name_of_start_state>

Transition Declaration:
Mealy:

link ​<transition_dest>(<input>,...)

Moore, DFA, NFA :
link ​<transition_dest>(<input>,...)/(<output>,...)

Concurrent:
link ​<transition_dest>

(<input>,...,[<concurrent_fsm_alias>.<state_name>,...]) /

(<output>,...)

Actions Within A State:
state ​ s {

actions ​ ​{
/~ actions performed by the fsm within the current state ~/

}

}

Main Function Declaration:
int ​ fill() {

/~ code block ~/
return ​ <return_value>

}

Helper Function Declaration:
<return_type> <function_name>(<parameters>) {

/~ code block ~/
return ​ <return_value>

}

Sample Code:

Bottle Code For A Moore Machine:
moore ​example_fsm {

input ​ [​char ​ char_input, ​int​ int_input]
output ​ [​int ​ a, ​int​ b]

state ​ s[0-1]
start ​ s0

s0 (1,0) {

link ​s0(‘a’, 1), s1(‘b’, 2)

actions ​ ​{
/~ specification for maintaining state but actions ~/

e.g

if ​ char_input == 'w' {

/~ Perform some task ~/

}

}

}

s1 (0,1) {

link ​s0(‘b’, 2), s1(‘b’, 1)
}

}

Bottle Code For A Mealy Machine:
mealy ​example_fsm {

input ​ [​char ​ char_input_name, ​int​ int_input_name]
output ​ [​int ​ a, ​int​ b]

state ​ s[0-2]
start ​ s0

s0 {

link ​s0(‘a’, 7)/(1, 0), s1(‘a’, 7)/(1, 1), s2(‘a’, 7)/(0, 0)
}

s1 {

link ​s0(‘a’, 9)/(0, 0), ​ ​s2(‘b’, 7)/(1, 0)
}

s2 {

link ​s0(‘a’, 5)/(1, 0), ​ ​s1(‘a’, 7)/(0, 1), s2(‘c’, 7)/(1, 0)
}

}

Bottle Code For Concurrent FSMs:

moore ​example_fsm ​depends​ conc_other ​as​ c {
input ​ [char char_input_name, int int_input_name]
output ​ [int a, int b]

state ​ s[0-1]
start ​ s0

s0 (1,0) {

link ​s1(‘a’, c.x1)/(1)
link ​s3(‘a’, c.x2)/(0)

}

s1 {

link ​s1(‘b’, 2)
}

}

Saké Code:
import ​ example_fsm ​as ​ f1 ~ located in Bottle file “example_fsm.bl”

empty ​ fill() {

print “Simulating f1 on c9w2: ” + f1.sim(“c9w2”)
print “Enter text to simulate f1 on: “ + f1.sim(stdin)
print “Reachability of state s2 in 4 steps: ”+

f1.is_reachable(s2, 4)
}

