

Crayon (.cry)
a raster graphics creation language proposal

Naman Agrawal (na2603)
Vaidehi Dalmia (vd2302)

Ganesh Ravichandran (gr2483)
David Smart (ds3361)

Introduction
Raster graphics are images created from two-dimensional arrays of hex codes that represent
the rectangular grid of pixels we see for many computer graphics. Inspired by this paradigm, the
Crayon programming language provides a way for the user to create all sorts of pixelated
images (in color) that they can imagine - like the beautiful creations often made on Microsoft
Paint, but worse.

Description
More technically, the language will be compiled into LLVM and feature a Java-like syntax.
Crayon is centered around its Canvas data structure that represents the aforementioned grid of
Pixel values of a set size. Users can then create images by altering these Pixels that store their
location on the grid and the color of the corresponding cell. Conventional operators and block
statements allow for more complex, algorithmically-based creations to aid in the process.
Shapes and basic artistic building blocks like circles and lines can then be used from Crayon’s
standard library in order to build better works more easily. Programs created in Crayon will then
result in bitmap files to view the created image, whether it be a smiley face, a tree, or a blocky
Mona Lisa. Further programs could then superimpose one Canvas on another to create melded
images, import pre-made Canvas-based pictures and alter them further, produce the negative of
a Canvas image, and more.

Simple Data Types
Data Type Description/Example

int standard integer
2

float standard float
2.4

char ASCII character
"4"

string standard string
"123"

boolean 0 or 1

null standard null

hex

standard hex
"#000000"

Complex Data Types
Data Type Description/Example

Array int a[45];

Canvas Finite-sized two-dimensional Array that holds
Pixel values (explained below) at each
coordinate. Pixel values are modified by the
user to create the image.

Canvas banana[20,20];

Pixel The canvas is made up of many Pixels. Each
pixel has a coordinate and colour.
Pixel(banana,x,y,hex)

Keywords
for for x in banana {x.setColor("#FFFFFF")}

OR
for (int i; i < 5; i++)
{banana[i].setColor("#FFFFFF")}

if if() { }

else else() { }

else if else if() { }

void standard void

Operators
+, -, *, /, =, %, ++, --, ==, !=, >, <, >=, <=, &&, ||, !
Comment operator:

:'(This is a single line comment)
:'(This is a
Multiple line comment)

Sample code

:’(This is a program to paint the American flag, with no stars)

Canvas flag[1000, 2000];

flag.set(0, 0); :’(set cursor at the top left corner of canvas)
flag.fill(700, 500, blue); :’(paints blue area for stars...values are
numbers of pixels, not coordinates)

flag.set(800, 500);
flag.replaceColor(white, red); :’(replace white with red)

upperBound = 0;
lowerBound = 99;
for i in flag.sect ion(800, 1999, 0, 999){

if(i.ycoord <= upperBound){
i.setColor(white);

}
else if i.ycoord > upperBound{

lowerBound += 200;
upperBound += 200;
flag.move(0, 100) :’(move cursor 0 in the x direction,
100 in the y direction)

}
}

upperBound = 1000;
lowerBound = 1999;
for i in flag.sect ion(0, 799, 1000, 1999){

if(i.ycoord <= upperBound){
i.setColor(white);

}
else if i.ycoord > upperBound{

lowerBound += 200;
upperBound += 200;
flag.move(0, 100) :’(move cursor 0 in the x direction,
100 in the y direction)

}
}

Output

