
yeezyGraph - Language Reference Manual

Wanlin Xie (wx2161) - Manager

Yiming Sun (ys2832) - Language Guru

Nancy Xu (nx2131) - System Architect

Kiyun Kim (ckk2117) - Tester

February 22, 2017

1 Introduction

yeezyGraph is a language that is built upon graph structures - a set of nodes and edges.

Graph structures model the relationships (edges) between a group of objects (nodes). Be-

cause the structure of a graph itself is so simple, a graph can be used to represent much more

complicated problems. For example, finite-state automata can be represented as directed

graphs, puzzles can be reorganized as configuration graphs, and recursive algorithms can be

shown as dependency graphs.

yeezyGraph is designed to facilitate the creation of graphs and the writing of graph al-

gorithms, so that users are not bogged down by graph creation. yeezyGraph will not only

implement the graph the user wishes to represent, but also output a model of the structure

that is easily configurable for further applications. For the purposes of this language, all

graphs are treated as directed graphs with weighted edges–that is, every edge travels in

one direction, and every edge has a value assigned to it as its weight. Because undirected

graphs and unweighted edges can be simulated using directed graphs and weighted edges,

this choice has little impact on the user’s ability to create a wide variety of graphs, and

allows for a simpler syntax to support the goal of this language.

2 Lexical Conventions

2.1 Primitive Types

Boolean (bool): the boolean data type has only two possible values - true and false.

Integer (int): an integer, typically reflecting the natural size of integers on the host

machine.

Floating point (float): single-precision floating point.

String (string): a sequence of zero or more characters, enclosed in double quotes.

1



2.2 Derived Types

List (list): an ordered collection of elements.

Map (map): a mapping of keys to values. A map cannot contain duplicate keys; each key

can map to at most one value.

Queue (queue): holds elements prior to processing.

2.3 Comments

Comments are denoted by **insert comment here**. There is no difference between

single and multi-line comments. Comments may not be nested.

2.4 Identifiers

Variable names must start with a lowercase letter. Node names are automatically generated

as graphname nodename.

3 Keywords

The following keywords are reserved words in yeezyGraph and cannot be used for variables or

functions defined by the user: graph, if, else if, else, for, while, bool,

int, float, string, map, return.

4 Built-in Data Types

4.1 node and graph objects

A node object represents a vertex in a graph object, and a graph object represents a

collection of nodes.

Definition of graph objects:

- An empty graph is a graph

- A node cannot exist independently of a graph; a node is only created in association with

a graph

- There can exist disconnected nodes within a graph object

- A node cannot belong to two distinct graphs

- A graph added to another graph is a graph

- A graph subtracted from another graph is a graph.

Node (node): a vertex of a graph. A node consists of the fields value, visited,

inNodes, as well as outNodes. value is of type string, and represents a value that is

associated with that particular vertex. visited is of type bool, and indicates whether

the particular node has been visited or not.inNodes is of type map, which maps a node

that has a directed edge into our node in question, to the value of the particular edge’s edge

2



weight. outNodes is of type map, which maps a node that has a directed edge out from

our node in question, to the value of the particular edge’s edge weight. You cannot initialize

a node; a node is only created when you add it to a graph.

Graph (graph): a graph is a collection of nodes. A graph consists of the sole field

nodes, which is a list of node vertices in the particular graph. Graphs are immutable,

meaning that you cannot modify its state after a graph is created. In order to make changes

to an existing graph, you need to assign the modified graph to another graph instance.

4.2 Collections

List (list): a mutable, ordered set of elements.

Map (map): a set of key, val pairs used to represent edges between nodes. A map

element consists of a key and val pair, where the key is the value of a particular node

and the val is the weight of the edge between the two node objects. Each node should

contain two maps, one to show incoming edges (inNodes) and one to show outgoing edges

(outNodes).

Priority Queue (pqueue): a data structure where each element has an associated priority

value. Elements with higher priorities are located further up in the pqueue.

5 Operators

5.1 Node Operators

{{}}: {node name} Accesses/creates a node object from the node name. The node is

identified by node name and graph name. For example, if you want to create a node in

graph g1, the name of the node would be g1 n1. You would only utilize this operator

when adding/subtracting a node in a graph, or when accessing a field from a node object.

@visited: {{g1 n1}}@visited accesses the boolean visited field of node g1 n1.

@inNodes: {{g1 n1}}@inNodes accesses the inNodes field, which is a Map Collection,

from node g1 n1.

@outNodes: {{g1 n1}}@outNodes accesses the outNodes field, which is a Map Collec-

tion, from node g1 n1.

5.2 Graph Operators

g1::n1 adds a node of string value n1 to the graph g1. This is the only way to ”construct” a

node, which is uniquely identified by its graph owner and string value. Node n1’s visited

field is initialized to false upon construction, and its inNodes and outNodes maps are

initialized to be empty. The :: operator can be chained.

g1#n1 removes the node of string value n1 from the graph g1. Nodes adjacent to n1 will

3



have their inNodes and outNodes maps updated.

g1 = {{g1 n1}} ->(x) {{g1 n2}} adds or updates a directed edge of weight x from n1

to n2, returning a new graph object that is assigned to g1. The -¿ operator can be chained.

g1 = {{g1 n1}} !-> {{g1 n2}} removes the directed edge from n1 to n2, returning a

new graph object that is assigned to g1. The !-> operator can be chained.

g1 == g2 compares the structural equality of graphs g1 and g2.

6 Source Code

1 ∗∗Dec lar ing a graph∗∗
2 graph g1 ;

3 graph g2 ;

4

5 ∗∗Adding nodes ∗∗
6 g1 = g1 : : n1 ;

7 g1 = g1 : : n2 ;

8 g1 = g1 : : n3 ;

9

10 g2 = g2 : : n1 : n2 : n3

11

12 ∗∗Adding connect i ons between nodes ∗∗
13 {{ g1 n1}}−>(3){{g1 n2 }}
14 {{ g1 n1}}−>(5){{g1 n3 }}
15 {{ g1 n2}}−>(3){{g1 n3 }}
16 {{ g1 n2}}−>(4){{g1 n1 }}

7 Built-in Functions

7.1 Nodes

7.1.1 Node Built-in Functions

printIncomingNodes(node name): retrieves the incoming node list and prints it.

printOutgoingNodes(node name): retrieves the outgoing node list and prints it.

hasConnections(node name): returns a boolean value indicating whether a node has

any incoming or outgoing edges.

returnGraphName(node name without graph name attached): returns a list of

the graphs that contain a node with the node name, for example, printGraphName(n1).

4



7.2 Graphs

7.2.1 Graph Built-in Functions

isEmpty(g1): checks if graph g1 is empty.

size(g1): returns the number of nodes in graph g1.

contains(g1, n1): returns true if the graph g1 contains the node n1; false otherwise.

print(g1): prints to standard output the string representation of a graph.

7.3 Collections

7.3.1 List Built-in Functions

print(): prints the list of elements in order.

get(int idx): returns the element at index idx. If index idx does not exist, an excep-

tion will be thrown.

add(int idx, node): adds a node to the the list so that the new element is at index

idx. If the list is not long enough to have index idx, then it will throw an exception.

remove(int idx): removes the element at index idx. If the list does not contain that

index, it will throw an exception.

contains(string name): searches the list to see if it contains a node that has the name

name. Returns true if it does, returns false otherwise.

append(node): adds a node to the end of the list.

removeAll():removes all elements from the list.

isEmpty(): checks if the listis empty. If it is empty, then it returns true. Otherwise, it

returns false.

size(): returns the number of elements in the list.

7.3.2 Map Built-in Functions

printMap(): prints each key, val pair as a tuple.

add(string key, double val): adds a key, val pair to the map.

remove(string key): removes a key, val pair from the map.

get(string key): returns the value associated with key. If map does not contain key,

then an exception is thrown.

contains(string key): checks whether or not the map contains key. If it does, then

it returns true, otherwise it returns false.

listKeys(): generates and returns a list of all keys in map.

size(): returns the number of keys in map. isEmpty():checks whether or not map con-

tains any key, val pairs. If it contains none, then this returns true. Otherwise, it returns

false.

5



7.3.3 Priority Queue Built-in Functions

isEmpty(): checks if the pqueue is empty. If it is empty, then this function returns true.

Otherwise it returns false.

size(): returns the number of elements contained in the pqueue.

top(): returns the value of the element on the top of the pqueue, but does not remove it.

push(node name): adds an element to the pqueue in accordance to the element’s prior-

ity value.

pop(): removes and returns the element on the top of the pqueue.

removeAll(): removes all elements of the pqueue.

8 Control Flow

8.1 Logical Expressions

The relational operators are <, <=, >, >=, which have the highest precedence, followed by

the equality operators == and !=, then &&, then ||. When comparing equality, primitive

types are compared by value, while derived and user-defined types are compared by reference.

8.2 If statements

1 i f ( c ond i t i on ) {
2

3 } e l s e i f ( cond i t i on ) {
4

5 } e l s e {
6

7 }

8.3 For loops

1 f o r ( node : graph ) {
2

3 }

8.4 While loops

1 whi le ( cond i t i on ) {
2

3 }

6


