An actor based language

Language Reference Manual

Group members:

Beatrix Carroll (bac2108)

Suraj Keshri (skk2142)

Michael Lin (mbl2109)

Linda Ortega Cordoves (102258)

Contents

1. Preface
1.1. Goal

1.2. Motivation

1.3. Description

1.4. Programs
2. Lexical Elements

2.1. Identifiers
2.2. Keywords
2.3. Constants
2.4. Separators
2.5. White Space
2.6. Comments
3. Data Types
3.1. Primitive Data Types
3.2. Non-primitive Data Types
3.2.1. Containers
3.2.2. Functions
3.2.3. Structs
3.24. Actors
4, Expressions, Assignment, and Operators
41. Expressions and Assignment
4.2. Assignment, Access, and Actor-specific Operators
4.3. Arithmetic Operators
4.4, Comparison Operators
4.5. Logical Operators
4.6. Type Casts
4.7. Operator Precedence
5. Statements
5.1. The if Statement
5.2. The match Statement
5.3. The while Statement
5.4. The for Statement
5.5. The break Statement
5.6. The continue Statement
5.7. The return Statement
6. Functions
6.1. Function Definitions
6.1.1. Named Functions
6.1.2. Lambda Functions

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Primitive-Types

10.

6.2. Calling Functions
6.2.1. Named Functions
6.2.2. Lambda Functions
6.3. Function Parameters
6.4. Passing Functions as Parameters
6.5. The main Function
6.6. Recursive Functions
6.7. Nested Functions
Program Structure and Scope
7.1. Program Structure
7.2. Scope
7.21. Scope in Actors
7.2.2. Scope in Functions
A Sample Program
CFG
9.1. The Notation of this CFG
9.2. Our Sample CFG
References

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Data-Types

Goal

Create an actor-based language with fault-tolerance that simulates the logic of Erlang and the
syntax of Scala in the Akka framework.

Motivation

The actor model provides a good framework for reasoning about concurrency and
distributed systems. The model elegantly handles concurrency issues which can be complex
when implemented in a thread-based model, such as locking and mutual access to resources.
Instead of multiple threads accessing a shared resource, the actor model relies on autonomous
actors performing asynchronous and independent computations.

Distributed systems requires comprehensive and secure communication capabilities with
its various remote processors. To achieve this, distributed systems require that processors
communicate via messages and that these messages be asynchronous. In the actor model,
actors communicate with each other exclusively through messages, which are stored in
mailboxes and processed asynchronously.

Description

We wish to create a programming language that implements the Actor Model with
fault-tolerance.

As the Actor Model specifies, Actors will be the basic unit of computation in our
language. Upon receiving a message, any actor will be able to only perform the following three
actions:

1. Create another actor

2. Send message to another actor

3. Update the internal state (specify the state in which it will be when it next receives a
message)

Each actor possesses an internal state. Actors will only be able to communicate with
each other actors via passing messages. Each message an actor receives will be stored in its
mailbox and processed asynchronously.

Programs

Our language is designed to write programs that take advantage of parallelism. Some examples
of these types of programs are: chat servers, phone switches, web servers, message queues,
and web crawlers. Our language is also designed for programs requiring multiple 1/O
computations, programs requiring strict fault tolerance, and programs requiring strict avoidance

of deadlocking.

|dentifiers

Identifiers can include letters, decimal digits, and the underscore character. The first character
of an identifier cannot be a digit. Identifiers are case sensitive.

Keywords

These keywords are reserved for use in our language: if, else, for, while, break, continue, actor,
int, float, string, char, boolean, receive, drop, after, new, none, return, match, case, func, main,
timeout.

Constants

A constant is a literal numeric or character value, such as 5 or 'm'. All constants are of a
particular data type.

An integer constant is a sequence of digits, with an optional prefix to denote a number base. An
integer constant is a sequence of digits.

A float constant is a value that represents a fractional (floating point) number. It consists of a
sequence of digits which represents the integer (or “whole”) part of the number, a decimal point,
and a sequence of digits which represents the fractional part. Either the integer part or the
fractional part may be omitted, but not both.

A character constant is usually a single character enclosed within single quotation marks, such
as 'Q'. A character constant is of type int by default.

A string constant is a sequence of zero or more characters, digits, and escape sequences
enclosed within double quotation marks.

Separators

A separator separates tokens. White space (see next section) and tabs are separators, but they
are not a token. The other separators are all single-character tokens themselves:

Separator Usage

() Orders operations within an expression, groups expressions

[Accesses the element of a container: [n] accesses the nth element
{} Denotes scope of code blocks, or a definition of a struct
, (comma) Separator for elements in a container, or function arguments list
; (semicolon) Separator for key-value pairs in a Dict
White Space

Like Python, our language is whitespace sensitive: it defines the hierarchy of the code. The
space character is also important in string and character constants and when separating tokens.

Comments

The /* */ symbols comments out entire sections of code, while // comments out a single line.

/*

comment

block
*/

// commented line

Primitive data types:

Data type keyword

Meaning

int Integers, 4 bytes in size

float Real numbers in floating point notation, 8 bytes in size
boolean True or false in value

char Represent the ASCII character set, 1 byte in size
string Collections of characters

Non-primitive types:

Containers:

Data type keyword
(note capitalization)

Meaning and usage

List Ordered list of items of a certain type, backed by a linked list
A list can be defined using List<[data type]> [list name]
For example:
List<int> int list = new List[1l, 2, 3]
Array A contiguous block of memory containing a collection of a certain
data type. For example:
Array<int> int array = new Array[l,2,3]
Tuple Ordered group of items of different types. For example:
Tuple my tuple = new Tuple[l, “hello”, ‘h’]
Set Unordered collection of unique objects of a certain data type. For
example:
Set<int> int set = new Set[l, 2, 3]
Dict A key-value pair store. For example:

Dict<string, int> my dict = [“bob”, 3; “jim”, 4]

Functions:

Functions are treated as first class objects. Please see the details in the later section on syntax
and usage.

Structs:

A struct is a custom data type which could contain other types as its members. They are
defined using the following syntax:

struct my struct ({
string skill;
actor my actor;

To use a struct, the new keyword is used:

my struct matt = new my struct();
matt.skill = “high”;

Actors:

As an actor-based language, actors are a central data type! They are considered a
non-primitive data type, with the following rules enforced by the compiler:
e All actors must implement a receive block (more details below)
e By default, an actor that receives a message not accounted for in the receive block does
nothing. The programmer can override this behavior by providing a drop block
e The programmer can provide an optional after([time in milliseconds]) block to provide
behavior if it waits too long on the response from another actor
e Like all other variables, instances of actors are immutable. To achieve changes in state,
an actor recursively calls itself with new arguments
e An actor can recreate itself recursively, but cannot recreate itself as a different type of
actor
e At least one of the actor’s actions in the receive block must result in the termination of
the actor (i.e. by not calling itself recursively again)
Actors have a built-in flush() function that outputs all the messages an actor has received
Actors always have access to a sender identifier (reserved keyword) which denotes the
handle to the actor that sent a message

The syntax of defining an actor is:
[actor name] ([actor state variables, as parameters]):
receive:

[message name] ([message paramenters]):

[behavior upon receiving message]
[drop:]
[behavior upon receiving a message not accounted for in the receive
block]
[after ([time in milliseconds]) :]

[behavior upon waiting too long for a response]

For example, to define an actor dolphin that keeps track of a name and weight, with the ability to
receive eat(int number) messages:

dolphin(string name, int weight) :
receive:
eat (int numFoodPellets) :
dolphin (name, weight + numFoodPellets)
runAway () :
print “So long, and thanks for all the fish!”

Expressions and Assignment

An expression is any legal combination of symbols that represents a value.
Assignments are expressions that set variables equal to the value of another
expression. Note that “variables” in our language are immutable, so reassigning
different values to the same variable results in the new value shadowing the old one, as
in OCAML. The syntax for assignments is:

[type of variable] [variable name] = [expression]

For example:
int x =5

int dist = sqrt(x*x, y*y)

Assignment, Access, Function, and Actor-specific Operators

Operator Meaning Associativity
= Assignment Left
. (period) Method accessor for non-primitive types Left
-> Denotes the return value for a lambda function, or the N/A
return type for a named function
| (pipe) Send message. Usage: [message] | [target actor] N/A

Arithmetic Operators

Operator Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left

% Modulus

Left

- (unary minus)

Value of the expression multiplied by -1

Right

Comparison Operators

Operator Meaning Associativity
== Equal to N/A
I= Not equal to N/A
> Greater than N/A
< Less than N/A
<= Less than or equal to N/A
>= Greater than or equal to N/A

Logical Operators

Operator Meaning Associativity
! Not, negation Right
Il Or Left
&& And Left
Type Casts

Our language will support casting between the float and int types, to facilitate arithmetic
operations between the two types. The syntax for this is:

([new casted typel]) [expression]

For example:

float a = 5.0 + (float) myInteger

Operator Precedence

The rules of precedence used when trying to solve an expression containing multiple operators.
Below is a list of types of expressions, presented in order of highest precedence first.

1. Sending messages to actors and waiting for a response.
1.1. Messages’ arguments are evaluated before being sent, if the message’s
arguments contain a compound expression
1.1.1. For example:
1.1.1.1. make_deposit(x+5) | bank_account

2. Function calls, and membership access operator expressions.

3. Unary operators, including logical negation, increment, decrement, unary positive, unary
negative, indirection operator, address operator, type casting, and sizeof expressions.
When several unary operators are consecutive, the later ones are nested within the
earlier ones: !-x means !(-x).

4, Multiplication, division, and modular division expressions.

5. Addition and subtraction expressions.

5.1.1. For example, in the expression a+b * £ () the order of precedence is to

call the the function £ with no arguments, multiply the result by b, then
add that result to a.

Greater-than, less-than, greater-than-or-equal-to, and less-than-or-equal-to expressions.

Equal-to and not-equal-to expressions.

Logical AND expressions.

Logical OR expressions.

All assignment expressions, including compound assignment.

10.1. When multiple assignment statements appear as subexpressions in a single

larger expression, they are evaluated right to left.

10.2. Compound assignments using tuples are also evaluated left to right (on each

respective side of the assignment operator
10.2.1. For example:

10.2.1.1. (a, b) = (*foo”, “bar”)

10.2.1.2. /I this executes as:
10.21.2.1. a=“oo”
10.2.1.2.2. b ="bar’
10.21.2.3. (a,b)=(a, b)

10.2.1.2.3.1. /I => which = (“foo”, “bar”)
11. Comma operator expressions.

© ©x®NO

The if Statement

You can use the if statement to conditionally execute part of your program, based on the truth
value of a given expression. Indentation determines the attachments of any e1se or e1se if
statements to the parent i . The syntax is as follows (note the indentation):

if (test)
then-statement

else
else-statement

The match Statement

You can use the match statement to compare one expression with others, and then execute a
series of sub-statements based on the result of the comparisons. The indentation of the case
statements denotes the attachment to the parent matcn statement:

x match
case 1: "one"
case "two": 2
case (int y): "scala.Int"

The while Statement

The while statement is a loop statement with an exit test at the beginning of the loop. The
indentation of the statement denotes the scope of the while loop:
while (test):
statement

The for Statement

The for statement is a loop statement whose structure allows easy variable initialization,
expression testing, and variable modification.

for (initialize; test; step):

Statement

The variable used to track the number of loops can be initialized in the for-loop’s initialize
statement.

The break Statement

You can use the break statement to leave the scope of a while, for, or match statement.

The continue Statement

You can use the continue statement in loops to terminate an iteration of the loop and begin the
next iteration.

The return Statement

The return statement comes at the end of a function to denote the value that the function
evaluates to.

Function Definitions

Named functions:

Named functions are declared using the func keyword, followed by the name identifier of the
function, its argument list, and the colon character, as per the following:
func function name (data type x, data type y) -> return data type:
/* function body */

return value

For example:
func sqgrt(int x) -> int:

return x * x

Lambda functions:

Lambda functions can be defined in place and can take any number of arguments but return just
one value in the form of an expression, using the following syntax:

([lambda function arguments]) -> [return value]

For example:

(int %, int y) -> x + y

Calling Functions

The syntax for calling named and lambda functions is as follows:

Named Function

int y = function name (int x, int y)

Lambda Function:

List<(string, int)> list housing cost = [(“Houston”, 20), (“Miami”, 30)]

calculate total cost(list housing cost.map((,x)->x)))

Function Parameters

Within the function body, the parameter is a local copy of the value passed into the function; you
cannot change the value passed in by changing the local copy. If you wish to use the function to
change the original value, then you would have to incorporate the function call into an
assignment statement:

int x = foo (x)

Passing functions as parameters

You can also call a function identified by a function identifier:

func function name (func f(int)->int, int times):
for(int i = 0; i < times; 1i++):
£(1)

The main Function

Every program requires at least one function, called ‘main’. This is where the program begins
executing, and serves as its function definition.

To accept command line parameters, the main function must accept a parameter of type
List<string> to accept the space-separated command line parameters:

main (List<string> args)

The main function may or may not return a value - execution of the program ends once the end
of the main function is reached.

Recursive Functions

You can write a function that is recursive—a function that calls itself.
func factorial (int x):
if (x < 1):
return 1
else:
return (x * factorial (x-1))

Nested Functions

Our language allows programmers to define functions within other functions. Hence, why the
main() function can call other functions.
main () :

other function():

return 5

Program Structure

The only requirement to run your program is the main function. That will be the entry point for
every program. Other than that, files can be linked to manually or by putting them in a central
directory that will be specified when compiling.

Scope

Scope refers to what sections of the code the program can “see.” All identifiers need to be
defined before their usage.

Example 1:
// This is correct
actor name () :

receive:

do_anything() :
“Hi” | Sender

main () :

actor new actor = new actor name ()

string response = do_anything | new_actor

Example 2 (usage before definition):
// Error: actor name is not defined at the time of usage
main () :

actor new actor = new actor name ()

string response = do_anything | new actor

actor name () :
receive:
do_anything() :
“Hi” | Sender

Scope in Actors

Declarations made within actors are visible only within those actors. The initialization values of
an actor is available across different sections (receive(), drop(), after()) and message types of
the actor. These are called actor-level variables. Inputs of messages are known as
message-level variables. These message-level parameters are only available within the
message body and go out of scope when the message body ends.

Actors have access to the pid or handle of the actor whose message they are currently
executing. They can access this pid by using the sender keyword while inside the actor
definition.

To reiterate, because actors are also immutable like all other objects, after an actor completes
the tasks of a message, an actor dies. Programmers can get around this by recursively calling
the same actor after the end of each message. In this recursive call, the actor can be created

with different actor-level variables.

Scope in Functions

Declarations made within functions are visible only within those functions.

The Dolphin Example:

dolphin (int weight, string name) :
receive:

eat (int num) :
dolphin (weight+num, name)

follow me() :
be followed | sender
dolphin (weight, name)

catch (actor target):
be caught and eaten | target
dolphin (weight, name)

twin yourself (int weight, string name):
twin = new dolphin (weight, name)
twin | sender
dolphin (weight, name)

be free():
// at least one message case MUST not recursively call the actor
print “So long, and thanks for all the fish!”

drop:
print “This is not allowed for a dolphin”
dolphin (weight, name)

after 3000:

timeout

trainer (string name, List<actor> followed by):
receive:
be followed() :
trainer (name, [sender|followed by])
throw fish to dolphin(actor target, actor food):
catch (food) | target
trainer (name, followed by)
drop:
print “This is not allowed for a trainer”

trainer (name, followed by)

fish(int weight):
receive:
Be caught and eaten:
eat (weight) | sender
// do not recursively call self, so the fish has died
drop:
print “I'm only a fish, I can’t do this”
fish ()

/* This is the entry point for the program */

func main() -> int:
bottlenose = new dolphin (3, “bottlenose”)
trainer = new trainer (“Bob”, new List<actor>())
salmon = new fish(15)
yellowtail = new fish(12)
bluefin tuna = new fish(100)
throw fish to dolphin (bottlenose, salmon)
throw fish to dolphin(bottlenose, yellowtail)
throw fish to dolphin(bottlenose, bluefin tuna)
be free() | bottlenose

return 0

Below is a rudimentary CFG that represents the type of CFG we would use. This is not fully
fleshed out yet.

The Notation of this CFG:

e the “|” symbol will be replaced by the “#” symbol. “e” represents the empty string.
e [] will represent groupings within the cfg grammar, because [] are not used in our
alphabet but () are.
o Forinstance:
o “[arg,]*arg” means:
m Arg,arg,arg,arg,arg

m Or:
m arg
m Or:
m arg,arg
m etc.

e [tab] represents the tab character
e [\n] represents the new line character

Our Sample CFG

type ->
primitive_type
nonprim_type

primitive_type ->
int

float

bool

char
string

nonprim_type ->

container
function
actor

struct

container ->

List

Array
Tuple

Set
Dictionary

H H HF H*

expression ->

literal

id

(expression)

expression unary_operator

expression binary_operator expression

H HF H H*

actor_declaration ->
actor_name (params):
[\n]+[tab]receive:
[[\n]+[tab][tab]msg:[tab][tab][tab]actor_instruction]*
[\n][tab]drop:
[[\n]+[tab][tab]msg:[tab][tab][tab] actor_instruction]*

declaration ->
actor_declaration
other_declation

other_declaration ->
type id
type id = literal

params ->
e
[expression,]* expression

actor_instruction ->
actor_instruction(params)
[| msg_target]*

actor_instantiation ->
[\n]actor_id = new actor_name(actor_params)

compile_this ->
func main(params):
[actor_instantiation][\n actor_instruction]*[expression]*]*

We borrowed the structure of our LRM heavily from the C Language Reference Manual:
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

