

Sick Beets
Language Reference Manual

Manager: ​Courtney Wong (cw2844)
Language Guru: ​Angel Yang (cy2389)
System Architect: ​ Kevin Shen (ks3206)
Tester: ​ Jin Peng (jjp2172)

Table of Contents

1 ​Introduction 3
2 ​Types and Literals 3
2.1 Primitive Types 3
2.2 Arrays 4
2.2.1 Empty Arrays 4

3 ​Operators and Expressions 4
3.1 Identifiers 4
3.2 Variables and Assignment 5
3.3 Arithmetic Operators 5
3.4 Logical and Relational Operators 5
3.5 Array Operators 6
3.6 Musical Operators 6
3.7 Tunes 7
3.8 Phrases 7
3.9 Tracks 7
3.10 Comments 7

4 ​Control Flow 8
4.1 if then else 8
4.2 for-each loop 8
4.3 while loop 8

5 ​Program Structure 9
5.1 Functions 9
5.1.1 Defining a Function 9
5.1.2 Applying a Function 9

5.2 Scope 9
5.3 Multi-Line Expressions 9

6 ​Standard Library 10
6.1 Tempo 10
6.2 Standard Library Functions 10

7 ​Context-Free Grammar 11

2

1. Introduction

Sick Beets is a programming language that allows users to compose
music by generating .midi files. Sick Beets is inspired by the
structured nature of music, which makes it easy to represent a
composition piece by defining attributes of notes such as pitch or
duration. Using Sick Beets, users can concatenate, overlay, and
transpose a series of notes to digitally encode their compositions.

2. Types and Literals

2.1 Primitive Types

Boolean (bool) : ​May be true or false.

Integer (int) : ​A literal such as 15 is a 64 bit signed integer.

Floating Point (float) : ​A floating point literal is a number with a
decimal point such as 2.75 or an exponent part such as 1e 5, or both.

String (string) : ​A sequence of ASCII characters such as “hello world
\n!” The string literal is enclosed in quotes, and special characters
are escaped using a backslash. The supported escape sequences are:

\n newline \r carriage return
\t horizontal tab \v vertical tab
\\ backslash \” double quote

Note: ​A pitch is specified by the following form:

NoteAccidentalOctave-Offset. ​ Accidentals are optional and can be
specified by: ‘b’ for flats and ‘#’ for sharps. For example, ​eb(-1)
is an E-flat which is one octave below middle C. Notes without an
octave offset are assumed to be in the octave of middle C. Supported
notes include a,b,c,d,e,f,g and r for rests.

Duration: ​The duration of a note is specified by a combination of key
letters. We support the following durations:

w: whole i: eighth
h: half t: thirty-second
q: quarter

3

Letters can be combined together to create other durations: For
example, ​wh ​would be a dotted whole duration.

Instrument: ​Instruments can be specified to play a series of notes,
and are specified by $ ​instrument ​ . The supported instruments are
piano, violin, flute, trumpet, and guitar. If no instrument is
specified, the default instrument is the piano.

2.2 Arrays

Array literals are literals enclosed by hard brackets. There are no
colons or semicolons between the items in the array. The following
are examples of valid arrays:

[$piano $violin $trumpet]
[1 2 3 4]
[“apple” “orange”]

Arrays are strongly typed, and all arrays can only have items of
the same type. For example, [1 w “red”] is not a valid array.

2.2.1 Empty Arrays

To create an empty array, one must specify the type before the
array literal: int[] creates an empty array with type int.

3. Operators and Expressions

3.1 Identifiers

Variable and function identifiers are sequences of one or more
letters and digits where the first character is a letter. Here are
several examples of identifiers:

chorus1, printHello, song2

The following are invalid identifiers that result in a syntax error:

1train, sick-beets, _hi

4

3.2 Assignment Operator

The operator = denotes assignment of an expression to a variable
identifier. The variable type does not have to be specified, because
of type inference.

3.3 Arithmetic Operators

The arithmetic operators are +, -, *, and /. These are all left to
right associative, with * and / have higher precedence than + and -.

Table 3.1 explains what each arithmetic operator does:

Operator Explanation

+ Adds values of left and right operands.

- Subtracts value of right operand from value of left
operand.

* Multiplies values of left and right operands.

/ Divides value of left operand by value of right operand.

Table 3.1: Explanations of arithmetic operators

3.4 Relational and Logical Operators

Below the arithmetic operators in precedence are the relational
operators: >, >=, <, and <=. These operators all have the same
precedence. Just below the relational operators in precedence are the
equality operators: ==, !=. Below the equality operators is boolean
AND: &&, and then boolean OR: ||.

Table 3.2 explains the relational and logical operators, ordered in
decreasing precedence.

Operator
s

Explanation

>, >=,<,
<=

The relational operators. These compare the values of
the left and right operands and evaluate as true or
false.

5

==, != The equality operators. These determine whether the left
and right operands are equal in value or not.

&& Boolean AND. Expects left and right operands to be of
type boolean.

|| Boolean OR. Expects left and right operands to be of
type boolean.

Table 3.2: Explanations of relational and logical operators

3.5 Array Access

Arrays are accessed with the following syntax:

identifier[index]

The index must have type int, and must range from 0 to (array length
- 1). Elements of an array can be modified using the assignment
operator, or retrieved. For example:

fruits = [“apple” “orange”]
print fruits[1] // prints “orange”
fruits[0] = “banana”
print fruits[2] // syntax error

3.6 Musical Operators

: augment - The : operator applies notes to rhythms (or vice versa)
to create a tune. Notes and rhythms can be augmented in a one-to-many
relationship.

tune = q : [c d e f]
tune = [g a b c] : w
tune = [q q q q] : d
tune = c : [q h q]

If array is augmented with another array, each array must have the
same number of elements, or an error will be thrown.

tune = [q q h] : [c e d]

6

3 ​.7 Tunes

A tune is a series of notes with corresponding durations for a given
instrument. The default instrument for a tune is $piano, but a tune
can have any instrument.

tune = [q q h] : [c e d]
violin_tune = tune $violin
flute_tune = tune $flute

We can concatenate tunes as well using the . operator.

piano_tune = [q q h] : [c e d] . [w] : [g]

3.8 Phrases

A phrase is a combination of tunes across the same duration. A
phrase is indicated with brackets {}. Every tune must have the
same duration.

chorus = { piano_tune, violin_tune, flute_tune }

3.9 Tracks

A track consists of a series of phrases, which can concatenated
via the . operator.

song = intro . verse . chorus . verse . end

3.10 Comments

Single-line comments are designated by //. Multi-line comments are
enclosed by /* */.

// This is a single line comment.

/*
 This is a
 multi-line
 comment.

7

*/
4. Control Flow

4.1 if elif else

Keywords “if”, “elif”, and “else” denote conditional statements
in which the expression body associated with each conditional is
executed iff the boolean expression evaluates to true:

if (/* boolean expression */) {
/* expression body */

} elif (/* boolean expression */) {
/* expression body */

} else {
/* expression body */

}

if statements can be stand-alone, but elif and else must have a
preceding if statement. An if else block can also be used.

4.3 for-each loop

Keyword “for” denotes the for-each loop that executes the
expression body for each item in the array, with the current
item accessible through the identifier:

for (/* item type */ /* identifier */ : /* array of items */)
{

/* expression body */
}

4.3 while loop

Keyword “while” denotes the while loop that will execute the
expression body repeatedly as long as the boolean expression
remains true:

while (/* boolean expression */) {
/* expression body */

}

8

5. Program Structure

5.1 Functions

5.1.1 Defining a Function

Keyword “function” denotes the definition of a function:

function function_name (/* list of parameters */) {
/* expression body */
return /* item or value returned */

}

Following keyword “function” comes the name of the function and
(a parameter)* enclosed in parenthesis. All functions must have
a return value, or an error will be thrown.

5.1.2 Applying a Function

transposed_song = transpose_song (song, 5)

Note: When a function is applied, parameters will be constant.

5.2 Scope

The scope of variables is the outermost level of braces in which
it is defined. If a variable is declared and not confined with
braces, then the scope is within the whole program.

5.3 Multi-Line Expressions

Lines are separated by the newline character. The continuation
character used for multi-line expressions is the ‘\’ character

multiLine = 1 + 2 + \
 3 + 4

9

6. Standard Library

The standard library allows users to configure the tempo of their
songs and contains functions helpful for manipulating tracks.

6.1 Tempo

The global variable ​tempo ​ controls the speed at which the song is
played, with an immutable time signature of 4/4 and default tempo of
120 bpm. The song will adopt the latest set tempo and is set this
way:

tempo = 160

6.2 Standard Library Functions

Sick Beets comes with three standard library functions: ​print ​,
render ​, and ​play ​. Each is outlined below:

print ​function
prints the string argument to standard out

print (“string”)

render ​function
creates a MIDI file of the song

render (song_name)

play ​function
plays the tune

play (tune_name)

10

7. Context-Free Grammar

program → epsilon | program stmt | program fdec

fdec → function id (params) { stmts }

params → epsilon | id | params , id

stmts → epsilon | stmts stmt

stmt → id = expr | return expr | if (expr) { stmt } elif_block
else_block | while (expr) { stmt } | print (expr)

elif_block → epsilon | elif_block elif (expr) { stmt }

else_block → epsilon | else { stmt }

expr → literal | [elements] | { elements } | expr + expr | expr -
expr | expr / expr | expr * expre | expr == expr | expr != expr |
expr > expr | expr >= expr | expr < expr | expr <= expr | expr : expr
| expr . expr | id (params)

elements → epsilon | literal | elements literal

11

