
MatchaScript: Language Reference Manual
Programming Languages & Translators

Spring 2017

Language Guru: Kimberly Hou - kjh2146
Systems Architect: Rebecca Mahany - rlm2175
Manager: Jordi Orbay - jao2154
Tester: Ruijia Yang - ry2277

Table of Contents
Preface / Introduction
Lexical Structure
Types
Expressions
Statements (if, while, for, case, etc.)
Functions
Classes

Introduction

MatchaScript is a general-purpose statically typed programming language that is convenient for
both imperative and functional programming. It will be compiled to LLVM using our OCaml
compiler, and will from LLVM be compiled to native code.

Features include:

● Optimized for event-driven programming
● Garbage collection, implemented similarly to OCaml
● No type inference
● Lexical scoping

Lexical Structure

Tokens in MatchaScript include identifiers, keywords, constants, literals, operators, and separators.
Tokens are separated by whitespace (blanks, tabs, and newlines) or comments.

Comments in MatchaScript are C-style comments, beginning with /* and terminating with */.

Identifiers are sequences of letters and, optionally, one or more digits or underscores. Identifiers
must begin with a letter. CamelCase is suggested.

The following are reserved keywords in MatchaScript:

For declarations, const is reserved to declare constants, and fun to declare functions.

The following are reserved for primitives: int, float, double, char, String, Boolean , and null .

The following are reserved for control flow: while, do/while, for, for/in, for/each, if/else if/else, switch,
try/catch/finally, continue, break .

The keywords class and constructor are reserved for implementing classes.

The keyword let is reserved for block scoping.

The keyword log is used for print statements in MatchaScript.

Unlike JavaScript, semicolons are mandatory for all MatchaScript statements.

A simple sample program with this structure can be seen below:

/****

Similar to JavaScript's console.log(), log.nl() adds a newline at the end of its print

statement while log() does not.

****/

function void helloWorld() {
log.nl("Hello World!"); // prints "Hello World!"
String world = "World.";
log("Goodbye " + world); // prints "Goodbye World."

}

Types, Values, and Variables

Primitives - strict type system

Name Description

int Integer

char Character

String Sequence of characters surrounded by ¡ and !

Boolean Boolean

float Single-precision floating point number

double Double-precision floating point number

Matrix Matrix of int, float, or double.

null Nullable type; All variables are automatically
assigned to it when not explicitly assigned

We will implement the const keyword for constant variables.

Expressions

Expressions in MatchaScript are assignments, function declarations, and function calls.

The following is a list of all operators in MatchaScript, in their order of precedence:

Operator Operation

++ Pre- or post-increment

-- Pre- or post-decrement

- Negate number

+ Convert to number

~ Invert bits

! Invert Boolean value

delete Remove a property

typeof Determine type of operand

void Return undefined value

*, /, % Multiply, divide, modulo

+, - Add, subtract

+ Concatenate strings

<< Shift left

>> Shift right with sign extension

>>> Shift right with zero extension

<, <=, >, >= Numeric or alphabetic comparison

instanceof Returns object class

in Test existence of property

== Test strict equality

!= Test strict inequality

& Compute bitwise AND

 ̂ Compute bitwise XOR

| Compute bitwise OR

&& Compute logical AND

|| Compute logical OR

?: Choose second or third operand

= Assignment

*=, /=, %=, +=, -=, &=, ^=, |=, <<=, >>=, >>>= Operate and assign

eval Evaluate or execute the argument(s)

For arithmetic expressions, MatchaScript, like JavaScript, will attempt to convert operands to
numbers; if they cannot, they will be converted to NaNs.

Notes on differences from JavaScript:

● We will not implement the comma operator.
● We implement strict equality and inequality only (=== and !== in JavaScript), but for

simplicity’s sake they will be implemented using the following operators: == and !=.
● We will implement eval() as an operator, rather than a function.

Statements

For the most part, MatchaScript syntax for statements is similar to JavaScript syntax.

Conditional Statements

if Completes block of statements when a
boolean expression is evaluated as TRUE

else if Follows a preceding if when the if is false. Acts

similar to an if.

else Follows a preceding if when the if is false.
Completes block of statements as long as
preceding if is false.

switch Completes one of multiple statements based
off of the value of a particular evaluation

OHMSS Completes block of statement if the reserved
variable OHMSS is set to true. Used normally
for testing and print statements.

Loop Structures

while Completes an entire block of statements until a
boolean expression is evaluated as FALSE

for A while loop that also increments a designated
variables that may or may not be used in the
boolean expression

Error Structures

try A structure that may or may not throw an
exception

catch A structure that may or may not handle
particular exceptions. Multiple catch clauses
can be used.

finally A structure that always executes when the try
block exits. Useful for mandatory clean up
procedures

Will not be implemented in MachaScript:

with With blocks allow a series of statements to be
performed on a specified object. Will not be
used because it is prone to misuse.

use strict Blocks that do not allow the use of undeclared
variables. Will not be used because is rarely
helpful to anyone.

As stated previously: unlike in JavaScript, semicolons are mandatory for all MatchaScript
statements.

Functions

Function Declaration

A function returns to its caller by either return; or return <type>; , the first case being valid if the
function return type is void and the function is to end early, and the second being valid otherwise.

Functions are declared using the function keyword. They may also be assigned to variables using
the fun keyword, or they can be anonymous functions. Below is an example of a simple function
call. Note that the void keyword is similar to C-based languages unlike JavaScript.

/*********/

function void add(int x, int y) {
int z = x + y;
log.nl(z); // this is the same as log.nl(x + y);

}

function void main() {
add(x,y);

}

/*********/

Functions can be assigned to variables using the fun keyword.

/*********/

function int factorial(int x) {
if (x === 1) {

return x;
} else {

return x * factorial(x - 1);
}

}

function void main() {
fun f = factorial(10);

log.nl(f); // prints 3628800
}

/*********/

Closures

MatchaScript supports closures, meaning when functions are nested within each other,
the inner function has access to variables in the outer function. Note that the inner function
stores references to these outer variables, not actual values.

Closures are implemented by

/*********/

function String myName(String firstName) {
String intro = "My name is ";

function String mySurname(String lastName) {
return intro + firstName + " " + lastName;

}

return lastName;
}

function void main() {
fun theName = myName("Stephen"); // outer function returns
log.nl(theName("Edwards")); // closure (inner function) returns; statement

//prints "My name is Stephen Edwards"

}

/*********/

Currying

Currying and higher-order functions are supported, allowing for detailed custom functions.
Below, note the use of anonymous functions which may be utilized as well.

/*********/

fun motto = function fun(String statement) {
return function fun(String name) {

return function void(String punctuation) {
log.nl(statement + ", " + name + punctuation);

};

};

};

fun pokemonMotto = motto("Gotta catch 'em all");
pokemonMotto("Ash")("!"); // prints "Gotta catch 'em all, Ash!"

fun edisonQuote = motto("Vision without execution is hallucination")("Thomas");
edisonQuote("?"); // prints "Vision without execution is hallucination, Thomas?"

/*********/

Classes

As MatchaScript is statically typed, the language implements classical OOP inheritance. This is a
departure from JavaScript, which uses prototype-based inheritance. Since variables are loosely
typed in JavaScript, if it cannot find attributes for a given object in its own definition, it will fall back
on each of its prototypes and look at their attributes to match which properties an object the user
declared can be assigned to without error. This fallback mechanism is one of the defining
characteristics of prototypical inheritance, where objects with loosely defined types can morph into
other types at runtime. For the purposes of a statically typed language, much of the power of
prototypical inheritance would be nullified because all variables have to be of one type throughout
the runtime of a program. Thus, a classical OOP inheritance model is better suited for MatchaScript.
Below is an example of class creation:

class Animal {
 constructor(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }
}

class BunnyRabbit extends Animal {

constructor(String name, int weight, String ears) {
super(name, weight);
this.ears = ears;

}
function int getWeight() {

return this.weight;
}
function void setWeight(int newWeight) {

this.weight = newWeight;
}
function String getName() {

return this.name;
}
function String getEars() {

return this.ears;
}
function void setEars(String newEars) {

this.ears = newEars;
}

}

BunnyRabbit bugsBunny = new BunnyRabbit("Bugs Bunny", 15, "Floppy");

Note that even though the syntax resembles the ES2015 syntactic sugar keyword set to implement
classes, the underlying mechanism for MatchaScript inheritance is still object-oriented based, not
prototypical.

