MPL: Matrix Processing Language

David Rincon-Cruz(Language Guru),
Chi Zhang(Tester),
Jiangfeng Wang(Team Leader),
Wode Ni(System Architect)
{dr2884, ¢z2440, jw3107, wn2155}

February 23, 2017

1 Lexical Elements

1.1 Identifiers

Identifiers are tokens used for naming varaibles and functions. They are case sensitive and should
start with a letter and can follow with letters, digits or underscores. Below describes the definition
of identifiers:

identifier ;= (letter) (letter | digit | underscore)*
digit :== 20°-’9?

letter == *A*-2Z7a’-’z>

1.2 Keywords

Keywords are case sensitive and are reserved for different uses in the language, so they cannot be
used as identifiers. Below lists all the keywords in MPL:

int float boolean
true false print
#N #3 #HW

#E #NW #SW

#NE #SE #C

if else elseif
OR NOT AND
return neg Mat

Img void imgread
imgwrite | printm | new
while func null

1.3 Literals

Literals are constant string, numeric, or boolean values, such as "helloworld", 100, or false. Each
literal has a specific type it belongs to and cannot be casted to other types. Assign a literal to
another type that it does not belong to will cause an error.

1.3.1 Integer Literals

Integer literals are whole numbers represented represented by a sequence of 0-9 digits. An integer
can be either positive or negative. To represent negative integers, a keyword "neg" is used.
Examples: 123; neg 321

1.3.2 Boolean Literals

Boolean literals have values either true or false. "true" and "false" are both reserved as keywords.
Examples: true; false

1.3.3 Operators

Operators are used for arithmetic operations such as addition, subtraction, multiplication and di-
vision. Operators can be applied on integers, float numbers and matrices.

We also add a few operators for easier manipulation of matrices calculation. @ operator is used
when applying a function to a matrix. “is used for calculating matrix transpose. ./ is used for
element-by-element division in matrices. Similarly, .* is used for element-by-element multiplica-
tion.

The difference between @ and .@ is in regards to arguments. .@ takes a function matrix and a
value matrix and applies functions to corresponding entries in the value matrix. @ takes a single
function and applies it to every entry of a value matrix.

Examples: +; -; *; /;0;.0;.%

1.3.4 Delimiters

We use white space to separate different tokens in the code.

1.3.5 Parentheses and Braces

Parentheses and braces are used to better format the structure of code and limit the scope of
variables. Local variables can only be accessed within the scope of code which is identified in the
pair of curly braces.

1.3.6 Commas and Semicolons

Commas are used to separate function arguments. Semicolons are used to terminate a sequence of
code.

1.3.7 Comments

Comment is denoted by //, such as // COMMENT

We also have block comment, which comments out section in between delimiters.
/* Comment

Yet another line of comment*/

2 Data Types

MPL uses strict typing. All variable types should be known at compile time and typecasting is
not allowed.

2.1 Primitive Data Types
2.1.1 int
32 bit signed integer ranging from -2147483638 to 2147483647.

2.1.2 float

8-byte double-precision floating point numbers.

2.1.3 Dboolean

1-byte boolean type, either true or false.

2.2 Non-primitive Data Types
2.2.1 Img

Images are the next higher level structure to Mat. Images are a collection of "channel" matrices:
R, G, B, A. Operations applied to Images are applied to each channel individually or each channel
can be reference individually: Imgl.R.

2.2.2 Mat

Matrices are the high level equivalent of their math counterparts and will be singly typed as one
of 3: integer matrices, float matrices, and function matrices. Function matrices can be applied to
integer and float matrices, and standard matrix operations apply (operators defined subsequently).

2.2.3 Declaring a matrix

You can declare a matrix by indicating the values at each entry with curly braces, and separate
each row with a semicolon. All the entries in a matrix must be the same type, either int, float or
boolean. For example, a 2*2 integer matrix can be initialized as:

Mat int A = {1 2; 3 4; }

2.2.4 Accessing matrix entry

Matrix elements can be accessed by providing the row and column location within brackets next
to the identifier of the matrix. Using the above example, to get the first row second entry (integer
2) in the matrix, we can do:

A[0,1]

3 Expressions and operators

3.1 Expressions

Expressions in MPL are made of operations between matrix and function. They are made up of one
or more operands and operators. Like all other mathematics language, innermost expressions will
be evaluated first. Otherwise the expressions with higher order will be evaluated before expressions
with lower order. If expressions have the same order, the expressions will be evaluated from left
to right.

3.2 Non-primitive Data Types

The tables below presents the language operators including assignment operators, mathematical
operators, logical operators, comparison operators, logical operators. There are also descriptions
and order:

operator | description order
+ plus 1
- minus 1
* multiply 2
/ divide 2
= assignment 0
< Less than 0
> More than 0
>= Less than or equals | O
<= More than or equals | O
== equals 0
@ apply 3

4 Statements and Functions

4.1 Statement
4.1.1 The if Statement

The if statement is used to execute a statement if a specified condition is met. If the specified
condition is not met, the statement is skipped over. The general form of an if statement is as follows:

if (condition) {
statementl;
statement?2;
statement3;

//

}

else {
statementl;
statement?2;
statement3;

//

4.1.2 The while Statement

The while statement is used to execute a block of code continuously in a loop until the specified
condition is not maintained. If the condition is not met upon initially reaching the while loop, the
code is never executed. The general structure of a while loop is as follows:

while(condition){
statementl;
statement2;
statement3;

//

4.2 Functions
4.2.1 User Defined Function Definitions

User Defined Functions in MPL is recognized as an operation on entries. It is treated more like
type of data types. The user defined function will operate on and only on the entries. So the way
it built is a little different from the tradition flows: a type key word which would be the type of the
entry operated, an initial word of "func" but no return type, a function identifier and a paramter.
However, in the func, it asks to return some data, which will be the resulted value of the entry
operated. An example is shown below:

int func fblur {
int temp = #C + 1;
return temp ;

}

4.2.2 User Defined Function Calling

A user defined function can be used directly on a matrix, which will operate every entry in the
matirx:

int func fblur {
int temp = #C + 1;
return temp ;
}
Mat int C = {1 1;
1 1;}

Mat int Result = fblur @ C;

print Result;
// D will be {2 2;
// 2 23}

4.2.3 User Defined Function Matrix

Functions can be used to build a function Matrix by giving functions in the entries of matrix
instead of common data types like(int, double). Building user defined function matrix and use it
on matrix is another way to calling functions. As mentioned before, function will operate only on
entries. By using functions as the value of matrix, we can easily do different operations on different
entries in the same matrix. An example is shown below:

int func f1 {
int temp = #C + 1;
return temp ;
}
int func f2 {
int temp = #C + 5;
return temp ;
}
int func £3 {
int temp = #C - 7;
return temp ;
}
int func f4 {
return temp ;
}
// build a matrix
Mat int A = { 1 2;
3 43}
// F is a matrix of user defined functions
Mat func F = { f1 £2;
£3 f4 ;}

Mat int D = F @ C;

print D;
// D will be {1 5;
// -6 1;%}

4.2.4 System Function

The system function are some functions that are included in the language, which is the built-in
functions and can be called in the main program. These are some useful and practical functions
like "print", "scan","imgread". Usually they will not operate matrix entries. Details in 6.2 built-in

functions.

#NVVI #N |#NE

#W | #C | #E

#SW| #S |#SE

Figure 1: Layout of an entry and its immediate neighbors

5 Program structure and scope

5.1 Program structure

An MPL program is a sequence of function declarations and a sequence of statements, which are
executed in order. All functions must be declared at the top of the program source file.

5.2 Scoping rules

All identifiers in MPL are in the global space, except the local variables declared inside functions.

Additionally, within the scope of an entry function, there are 9 predefined identifiers that rep-
resents the entry that the function is applied to and its immediate 8 neighbors: #N, #S, #W, #E,
#NW, #SW, #NE, #SE, and #C. See Figure 1.

In the case of an 1 x 1 matrix and entries that are on the edges of a matrix, the neighbors
that are outside of the boundry of the matrix will all have the special value null by default. It
will be a runtime error to assign any value to these neighbors.

6 Built-in functions

6.1 print functions

print(string-literal);
printm(matriz);

The print function takes a string literal as input and will output it into stdin. printm function
takes in a Mat typed value and prints the matrix in a human-readable format to stdin.

6.2 imgread and imgwrite functions

imgread(string-literal)
imgwrite(image, string-literal, string-literal)

imgread and imgwrite are I/O functions for images. imgread takes in a string literal containing
a relative or absolute path to a file in the file system, opens the file, and returns an Img object
containing the data of that file. imgwrite function takes in an Img object, a string literal specifying
the file name, and another string literal specifying the file format of the image such as "jpg". The
function will then attempt to write the contents of the Img object to the file system using the
specified format.

7 Sample programs

7.1 Image blurring

In this example, we construct a function that performs convolution on an image using a blur kernel
encoded.

// Img is a basic struct that has 3 matrix.
// struct Img
// { Mat<double> R, G, B;}

// Read from a picture called Lenna.png
Img image = imgread("Lena.png");

// Now we have 3 matrix of int, R,G,B

// We enconde the convolution against blur kernel in this function
float func fblur {
double grayValue=0.0;
grayValue = #C*0.147761 + (#N+#S+#E+#W)*0.118318 + (#NE+#NW+#SE+#SW)=*0.0947416
return grayValue;

}

// Use the function fblur on every channel in the matrix;
Mat blurredR = fblur @ R;

Mat blurredG = fblur @ G;

Mat blurredB = fblur @ B;

// format the image for output
Img output = new Img(blurredR, blurredG, blurredB);

// imgwrite helps to output the image.
imgwrite (output,"blurredLena.png");

8 Context Free Grammar

The | and o symbols are CFG syntax, not part of the language.

program — functionDefs o matrixCode
functionDefs —e|fDecls o functionDefs
fType —int| float
fDecl — fType o funco fIdo {gStatements}
gStatements —e|gStatement; gStatements
fStatement —gExpr;
|return
lif (gExpr){ fStatements}else{ f Statements}
| fvDecl
fvDecl — fType oid = fExpr;
fExpr —(fExpr)|fExpr + fTerm|fExpr — fTerm|fTerm
fTerm — fTerm * (f Expr)
| fTerm *x number
| Term/(fEapr)
| fTerm/number
imgDecl —Imgid = Img(String);
|[Imgid = Img(matld, matld, matld);
MatrizCode —genStatements
genStatements —e|lmatStatement|imgDecl|gExpr;
lif (gExpr){genStatments}else{genStatements}
|while(gExpr){genStatements}|return;
gvDecl —gType oid = gExpr;
gT'ype —int| float|boolean
gExpr —(gExpr)|gExpr + gTerm|gExpr — gTerm|gTerm
gTerm —gTerm x (gExpr)
|gT erm * number
|gTerm/(gExpr)
|gTerm/number
matStatement —matDecl| f MatDecl|mat Expr;
matDecl —Mat < type > id = matExpr; |
Mat < type > id = [matRows];
matRows —[numbersList]|[numbersList]; mat Rows;
numbersList —number|number; numbersList
fMatDecl —fMatid = fMatExpr;
matExpr —(matExpr)
|mat Expr + mat Expr
|mat Expr — mat Expr
|matTerm
matTerm —matTerm = (matTerm)
|matTerm x matFuncted
|matTerm/(mat Expr)
|matTerm/matFuncted
|matTerm * .(matTerm)
|matTerm x .matFuncted
|matTerm/.(matExpr)
|matTerm/.matFuncted
matFuncted —id
|fID@id 8
|fID@.id

	Lexical Elements
	Identifiers
	Keywords
	Literals
	Integer Literals
	Boolean Literals
	Operators
	Delimiters
	Parentheses and Braces
	Commas and Semicolons
	Comments

	Data Types
	Primitive Data Types
	int
	float
	boolean

	Non-primitive Data Types
	Img
	Mat
	Declaring a matrix
	Accessing matrix entry

	Expressions and operators
	Expressions
	Non-primitive Data Types

	Statements and Functions
	Statement
	The if Statement
	The while Statement

	Functions
	User Defined Function Definitions
	User Defined Function Calling
	User Defined Function Matrix
	System Function

	Program structure and scope
	Program structure
	Scoping rules

	Built-in functions
	print functions
	imgread and imgwrite functions

	Sample programs
	Image blurring

	Context Free Grammar

