
Ballr: A 2D Game Generator
players gonna play

Language Reference Manual
Noah Zweben (njz2104)

Jessica Vandebon (jav2162)
Rochelle Jackson (rsj2115)

Frederick Kellison-Linn (fjk2119)

I. Lexical elements:

1. Identifiers
Identifiers are for naming entities, gameboards, colors, and other data types. They are defined
as at least one lowercase letter followed by any combination of letters, numbers, and
underscores.

2. Reserved Keywords & Symbols
The following case sensitive keywords are reserved for specific purposes and cannot be used
as identifiers:

entity func time restart load

gameboard click keypress add remove

float int bool >< ->

event clr pos mov if

while self color vec size

click_pos init frame include

3. Literals

1. Integer literals
Sequences of one or more digits (ex. 253)

2. Float Literals

Sequences of one or more digits containing a ‘.’ with at least one digit before the ‘.’ and
at least one digit after the ‘.’ (ex. 1.23)

4. Operators

*, /, % multiplication, division, modulo
+, - add, subtract
>, >=, <, <= inequality operators
==, != equal, not equal
= assignment
!, &&, || not, and, or
. access

5. Delimiters

1. Parentheses
Parentheses are used to enclose arguments in function calls as well as to force
precedence orders in expression evaluations.

2. Commas
Commas are used to separate arguments in function calls and to separate values in
color and vector data types.

3. Semicolons

Used to terminate a statement.

4. Curly braces
Used to enclose a series of statements in conditional blocks, loops and entity,
gameboard and function definition blocks

6. Whitespace

Whitespace is only used to separate tokens.

7. Comments

Only single line comments are allowed and are started with //

II. Data Types

1. Primitive Data Types

Integers: ​Most numbers will be declared as type int (all numbers relating to position of entities
within a gameboard will be implicitly rounded to an int)
Floats: ​Floating point numbers will be declared as type float, and can be used in mathematical
expressions

Booleans: ​Boolean values will be declared as type bool and can be True or False

2. Non-Primitive Data Types

Color
A ​color ​ is a built in datatype composed of a red (r), green (g), and blue (b) value. Many
predefined colors available in the Standard Library ______. The values of the red, green, and
blue components are integers between 0 and 255 and are enclosed in () and separated by
commas. Color’s r,g,b components can be accessed or set using . notation.

Syntax Example

color <name> = (r,g,b);
//set entity color equal to new
color
entity.clr = <name>
//change color
<name>.<r/g/b> = <val>;

color blue = (0,0,255);
//set entity color equal to new
color
player.clr = blue;

//unnamed color allowed
player.clr = (255,0,255);

//change color
player.clr.g = 255;

Vector
a ​vec ​is a built in datatype composed of an x and a y value. The values in the ​vec ​may be
constructed with or ints, but everything will be rounded to int. The values of x and y are
enclosed in () and separated by a comma. A vector’s x and y component can be accused or set
using . notation.

Syntax Example

vec <name> = (x,y);
//move player to vector
<entity>.pos = <name>

//change vec
<name>.<x/y> = <val>;

vec teleport = (100,100);
//move player to vector
player.pos = teleport;

//unnamed vector allowed
player.pos = (100,100);

//change vec
teleport.x = 42;

Vector Operations
Available operators for vectors are as follows. All operations are component-wise:

Symbol Name Definition Example

+ Vector Addition vec1 + vec2 =
(vec1.x+vec2.x,vec1.y+vec2.y)

vec new = (100,50)+(25,30);
//(125,80)

- Vector Subtraction vec1 - vec2 = (vec1.x -
vec2.x,vec1.y - vec2.y)

vec new = (100,50)-(25,30);
//(75,20)

* Vector Multiplication vec1 * vec2 = (vec1.x *
vec2.x,vec1.y * vec2.y)

vec new = (100,50) * (2,1);
//(200,50)

/ Vector Division vec1 + vec2 = (vec1.x /
vec2.x,vec1.y / vec2.y)

vec new

Gameboard
gameboard ​ is the data type that represents the current window that a user is playing in and
interacting with. Only one gameboard is allowed per file and the name must match the filename.

gameboard.size
The size represents the size of the window the user will interact with and is of type ​vector ​. The
vector encodes information about the playable window’s width and height.

gameboard.init
The ​init​ event is a reserved event keyword that is triggered at the very beginning of the game
(see section ? for description of events). Behavior needed to set up the game such as adding
players is contained in the gameboard’s init event.

Syntax Example

gameboard <name> {
size = (width,height);
clr = (r,g,b);
init -> { setup code }

}

gameboard <name> {
size = (200,100);
clr = (255,255,255);
init -> add(player(),(100,50));

}

Entity
An ​entity ​is a rectangular component within a gameboard. An entity is composed of a color
and a size. Users may also define additional variables to be associated with the entity. Event
driven behavior can be added to entities. Events are described in the following section. In
addition, users may define movement for an entity to set up automatic motion.

Entity.size ​(required)
All entities must possess a size variable of type ​vec. ​The size encodes the dimensions of the
entity as width and height​. ​It can be both read and set.

Entity.clr ​(required)
All entities must posses a clr variable of type color. This variable sets the color of the entity
when it appears on the gameboard. It can be both read and set.

Entity.pos
Once entities are placed on a gameboard they contain a variable called​ pos ​of type ​vector
encoding the x and y position of the entity center​. entity.pos ​can be set or read from​.

Entity.init_pos
Entities possess a member called init_pos of type vector which contains the position at which
they were initially placed. ​entity.init_pos ​ member is read only, and is useful for setting up
parametric motion around a point (see example)

Entity.frame​(optional)
Entities frame event is triggered every frame. This allows you to apply frame by frame changes
to color or position.

Syntax Example

entity <name> {
//required

size = (width,height);
clr = (R,G,B);

//optional
frame -> <change>

//adding non-required variables
<type> <name> = <init. val>;

}

entity player {
size = (10,10);
clr = (255,255,0);

//parametrically sets up circular
motion

frame -> self.pos =
self.init_pos+(10*cos(time),10
*sin(time));

//adding non-required variables
int score = 10;

}

To create an instance of an entity you call it's name using the syntax entity(). For example
obstacle obs = obstacle();
add(obs, (50,30));

To refer to an entity within its own body, use self.

When referring to entities from within functions, you pass the entity name. Then the function checks
against every game piece of that type. For example,

player >< obstacle -> remove(obstacle)

III. Functions

1. Built-in Functions
add(entity, vec) - adds an entity at specified position
remove(entity) - removes from gameboard
load(gameboard) - loads a different gameboard file, useful for switching between levels
restart() - restarts gameboard from init

2. User-Defined Functions
Defining a named function: func function_name(args) return return_type
To call a named function: function_name(args)

IV. Events

1. <event trigger> -> <behavior> (Event Operator)
An ​event trigger ​ is a boolean expression which appears on the left hand side of the ‘->’
symbol. This can be a collision between two objects, keyboard input, and win conditions.

Any statement to the left of a -> operator is interpreted as an event trigger, and must evaluate to
True or False. Named events are useful for composing more complicated events, but not all
events must be named. Event triggers get checked every frame in an unspecified order.

Event driven behavior specific to an entity is defined within the entity block. For example:

entity main_character{

size = (10,10);
clr = (255,0,0);
int damage = 0;
keypress(KEY_UP) -> pos.x+10

keypress(KEY_DOWN) -> pos.x-10
onclick -> add(self,click_pos)
(self.damage > 100) -> remove(self)

}

Built-in Events
keypress(int key): triggered when the user presses a key
self >< <entity>: triggered when the object collides with an entity of type <entity>
onclick: triggered when the user clicks in the screen (with global click_pos storing the location)
frame: triggered once every frame for each object that defines a behavior

V. Control Flow Statements

1. Conditional Statements:
if (<bool>) {

<expr>
} elsif (<bool>) {

<expr>
} else {

<expr>
}

2. While loops:
while (<bool>) {

<expr>
}

VI. Program Structure and Scope

All code for a program is to be contained within a single file. This file must have one
gameboard ​with the same name as the file.

Within a program file, the globally scoped values are functions and gameboards, and global
values defined by the standard library (KEY_UP, etc.) or user. Names of entities can also be
referenced globally within the file.

To link in global libraries use the syntax
include <library name>

Within blocks (entities, functions, etc), scope is determined by curly braces (variable shadowing
not allowed). Behavior blocks and event expressions declarations can also reference a special
local variable ‘self’ which refers to the current entity.

VII. Sample Program

entity obstacle {

clr = blue;
size = (20,20);
mov = myMov;

}

func pos myMov(ent){

return(ent.pos.x, ent.pos.y + sin(time));
}

entity player{

size = (20,20);
clr = red;
bool has_pickup = false;

keypress(KEY_RT) -> pos.x++;
keypress(KEY_LF) -> pos.x--;
keypress(KEY_UP) -> pos.y++;
keypress(KEY_DN)-> pos.y--;

>< obstacle -> restart();
>< pickup -> {

self.has_pickup = true;
}
>< endzone -> {

if (self.has_pickup) {
load game2;

}
}

}

entity pickup {

clr = yellow;
size = (20,20);
>< player {

remove(self);
}

}

entity endzone {
size = (30,50);
clr = green;

}

gameboard game1 {

size = (200,100)
init {

int i = 0;
while (i < 6) {

obstacle obs = obstacle();
if (i%2) {obs.mov = obs.mov * (1,-1); }
add(obs,(20+20*i,50));
i += 1;

}
add(player(), (10,50));
add(pickup(), (100,50));
add(endzone(), (175,50));

}
};

