tiler.

2D turn-based gaming language

Manager: Jason Lei (j13825)

Language Guru: Monica Ting (mst2138)
System Architect: Jiayin Tang (jt2823)
System Architect: Evan Ziebart (erz2109)
Tester: Jacky Cheung (jc4316)

Table of Contents

1. Introduction
1.1 Why tiler?
1.1.1 Abstraction of game structure
1.1.2 Ease of use and learning
1.1.3 Handling of I/O

2. Language Tutorial
2.1 Environment Setup
2.2 Getting Started
2.3 Simple Example

3. Language Reference Manual

3.1 Program Structure
3.1.1 Window Parameters
3.1.2 Global Declarations
3.1.3 User-Defined Code Blocks
3.1.4 Special Code Blocks
3.1.2 Game Loop

3.2 Lexical Elements
3.2.1 Identifiers
3.2.2 Reserved Keywords
3.2.3 Literals
3.2.4 Delimiters

3.3 Expressions
3.3.1 Binary Operators
3.3.2 Unary Operators

3.4 Statements
3.4.1 Return statement
3.4.2 Conditional statement
3.4.3 while loop
3.4.4 do while loop
3.4.5 for loop

3.5 Data Types
3.5.1 Primitive Types
3.5.2 Non-primitive Types

3.6 Classes
3.6.1 Default Attributes

~ A b b~ &

wh D D W

O 0 9 9 9 O &

10
10
10
10
11
12
12
13
14
14
14
14
14
14
14
14
15
17
17

3.6.2 Instantiation
3.6.3 Object class type
3.6.4 Assignment
3.7 Scope & Variable Declarations
3.7.1 Global declarations
3.7.2 Local declarations
3.7.3 Attribute declarations
3.7.4 Non-primitive type declarations
3.8 Functions
3.8.1 User-Defined Functions
3.8.2 Built-In Functions
3.9 Context Free Grammar

4. Project Plan

4.1 Process
4.1.1 Planning and development process
4.2.2 Project management

4.2 Roles and Responsibilities

4.3 Timeline

4.4 Software Development Environment

4.5 Style Guide

4.6 Project Log

5. Architectural Design
5.1 Block Diagram
5.2 Compiler Components
5.3 Tiler Runtime Library
5.3.1 SDL Summary
5.3.2 Tiler-lib Functionality

6. Test Plan and Scripts

6.1 Testing Plan
6.1.1 Overview
6.1.2 Testing Complications
6.1.3 Unit Testing & Integration Testing

6.2 Test Suite
6.2.1 Design and Description of Testing Script
6.2.2 Testing Script Code Listing

17
17
17
17
17
17
18
18
18
18
18
19

21
21
21
21
21
22
23
23
23

24
24
24
25
25
25

27
27
27
27
27
28
28
28

7. Language Evolution
8. Lessons Learned

9. Demos
9.1 helloworld.tile
9.2 tictactoe.tile
9.3 calculator.tile

10. Appendix

10.1 Tiler Compiler
10.1.1 ast.ml
10.1.2 scanner.mll
10.1.3 parser.mly
10.1.4 semant.ml
10.1.5 codegen.ml
10.1.6 tiler.ml

10.2 Runtime Library

10.3 Tests

10.4 Git Log

32
33

35
35
36
39

43
43
43
46
48
50
55
66
67
83
99

1. Introduction

1.1 Why tiler?

Tiler is a language intended to streamline the process of programming 2-dimensional, turn-based
games. Its name derives from the fact that the most basic unit of such games is the tile, which is
then arranged with other tiles into a grid. 7iler can feasibly be used to program for other
purposes, but its structure and syntax make it especially intuitive to program turn-based tile
games. Tiler achieves its goal of simplifying the implementation of games through the following
principles:

1.1.1 Abstraction of game structure

Any program in Tiler is based around the concept of a block. Blocks represent the most universal
and foundational aspects of games, such as the initialization of a gameboard, looping of turns,
creation of object classes, and checking of end conditions. The built-in abstraction of these
aspects allows for faster game design and implementation as well as improved code readability
and reuse.

1.1.2 Ease of use and learning

Tiler is designed to be both familiar to experienced programmers and simple enough for less
experienced programmers to easily pick up. This is a consequence of Tiler’s Java-like syntax, as
well as the aforementioned abstraction of game concepts into blocks. Tiler’s language-specific
keywords have also been carefully selected to map directly to tangible game components. Thus,
the learning curve for a new 7Tiler programmer should be minimal.

1.1.3 Handling of I/O

A frequently complicated aspect of programming games is deciding how to collect user input and
display game graphics. Tiler handles this for programmers by linking directly with SDL (Simple
DirectMedia Layer), which is written in C and provides “low-level access to audio, keyboard,
mouse, joystick, and graphics hardware via OpenGL and Direct3D”. Specifically, by providing a
simple interface for SDL’s mouse input and graphics handling, Tiler allows programmers to
focus on the contents of their games rather than the details of working with a third-party library.

https://www.libsdl.org/
https://www.libsdl.org/

2. Language Tutorial

2.1 Environment Setup

Tiler requires SDL as well as the Ocaml LLVM library, which can be installed through Opam.
To install SDL, download its source code.

On Mac OS, the environment can be easily set up with Homebrew: brew install ocaml,
then brew install opamand brew install sdl2.

2.2 Getting Started

After downloading tiler files, run in following commands in the command line:
$ cd tiler
S make all
You can load up a pre-existing .tile file or write your own called my awesome game.tile with
the required sprites stored in the /sprites folder. To run:
$ make my awesome game.game
This will produce an executable with the extension .exe, which you can then run:

$./my awesome game.exe

2.3 Simple Example

The following tiler program is a game which places an object on the grid and then counts to 10.
“//” denotes a single-line comment.

// declare a class object
class Object {}

// declare a global integer to count the number of turns
int count;

// init block -- code executed at the start
init {

<Object> obj; // declare an instance of the class

setSprite (obj, 'foo.bmp') ; // set the image for the instance
tile(3,3); // create a 3x3 grid
grid[0,0] = obj; // place the instance on the grid
count = 0; // assign global count
}
// turn -- the code that is run before each check of the end condition
turn {
count = count + 1; // increment global count

iprint (count) ; // prints the value of count

https://www.libsdl.org/download-2.0.php

// end block —-- returns if end condition met

end {
return (count > 9);

// true when count 1is 10 or more

The code first creates an instance of the class object and sets its sprite to ‘foo.bmp’. The

setSprite () function takes an object and a filepath as arguments, so the image will be set

according to the data in ‘foo.bmp’. Next, it declares a grid of size 3x3 using the tile ()
function and places the object at location [0,0]. After init, count is 0. The turn block runs 10

times, each time incrementing count and then printing its value using the iprint () function.

This stops when the end returns true. The following is the program’s output.

©O© 00 J o U1 b W DN -

game over

3. Language Reference Manual

3.1 Program Structure

In the tiler language, the .tile program can be organized into four general sections: window
parameters, global declarations, user-defined code blocks, and special code blocks.

#size 500 250
#color 0 0 255
#title "Hello World"

int x;

int y;

int add(...) {...}
class Piece {...}

init {
tile (3, 3);
background ("hello.bmp") ;

!/
!/
//

!/

!/
!/

!/
!/
!/

set window width and height
set window background color
set window title

global variables definitions

user-defined functions
user-defined classes

init block: required
initialize grid to 3 by 3

initialize board image

turn {...} // turn block: continuous looping of block

end {...} // end block: returns true on game end

3.1.1 Window Parameters

Parameters for the window display of the game can be customized by the programmer.
Customizable parameters include the dimensions of the window, the background color of the
window, and the title of the window. These lines must appear at the top of the program file, if
you choose to utilize them. Each parameter is specified with a keyword followed by a space
separated list. Size takes two integers, where the first integer specifies the width of the window
in pixels and the second the height. Color takes three integers between 0 and 255 for the RGB
value in decimal code, specifying the window’s background color. Title takes a string enclosed
in double quotes for the window’s title.

#size 500 250
#color 0 0 255
#title "Hello World"

3.1.2 Global Declarations

Global declarations are made outside of all code blocks and because its scope is global, it is
accessible throughout the program in any block. See Section 3.7.1 for more on global
declarations.

3.1.3 User-Defined Code Blocks

After window parameters and global declarations, the rest of the .tile program is divided into
different labeled code blocks, each serving a specific function in defining the larger game. The
tiler language allows for user-defined code blocks for functions and classes. These blocks are
optional or the programmer can define multiple as long as each has a different name. The scope
of each block is marked by a pair of curly braces.

Functions

Programmers may define their own reusable functions. Functions may take any primitive types
as arguments and also may return any primitive type. Functions may also return void. See
Section 3.8.1 for more on user-defined functions.

Classes

The class block defines the objects that will populate the board during game execution. Each
instance of a class implicitly contains the attributes x and vy, specifying its location on the grid.
All other attributes can be specified within the class block with the attr keyword followed by
the type and attribute name. See Section 3.6 for more on user-defined classes.

class Piece {
attr: string player;
attr: string role;

}

3.1.4 Special Code Blocks

Finally, the tiler language contains three special code blocks, each of which can appear at most
once. Each code block is indicated by a specific keyword in the language: init, turn,
end. The scope of each special block is also marked by a pair of curly braces.

init block

The init block defines how the game should be at the start of execution. This code serves the
function of setting up the game board as well as initial placement and states for all the objects
involved in the game.

init {
tile (3, 3); // set grid size
background (“tictactoe.bmp”) ; // set optional background image

turn block

The turn block defines how the game behaves during each of the one or more turns. The game
might prompt the player, listen for input, and/or manipulate the objects on the board. This allows
the programmer to abstract away the need for a “game loop,” since these code segments will
loop continuously during play.

turn {
// developer code here

}

end block

The end block defines a series of conditions which indicate that the game has reached a final
state. If the end block returns true, the game is over. If it returns false, the game loop continues
on by executing the turn block again.

end {
if (endCondition) {
sprint (“Player 1 wins”);
return true;
}
return false;

}

3.1.2 Game Loop

Every game must contain an init block. Every game should
contain at most one init block, at most one turn block, and at
most one end block. Games can contain any number of
user-defined classes and user-defined functions. The order
that the blocks appear in the program does not matter.

The tiler language is statically scoped. Variable that are
globally declared are globally scoped. Otherwise, all
variables declared in the other code blocks have a local
scope marked within the curly braces.

The following control flow diagram is an example of a
game. The init block is executed first to set up the game.
Following the init block, there is an internal game loop that
continuously iterates through turn blocks in the game,
checking the end block condition after every turn. The game
is over when the end block returns t rue indicating end of
game.

3.2 Lexical Elements

3.2.1 Identifiers

Identifiers are strings for identifying variables and functions. They can contain letters, numbers,
and underscores. Identifiers always begin with a letter and are case sensitive, generally beginning
with lowercase letters, unless they are a class name.

3.2.2 Reserved Keywords

Keywords are reserved for specific usages in the language, begin with letters, and cannot be used
as identifiers. Keywords are case sensitive.

tiler’s keywords include:
#title, #size, #color
init, turn, end, class
int, float, string, bool, coord, void
if, else, do, while, for, return
true, false, NULL
grid, gridh, gridw
attr, new

gridh can be used to get the height of the grid and gridw can be used to get the width of the
grid. All other keywords are used and explained throughout the Learning Reference Manual.

3.2.3 Literals

Each literal has a specific data type corresponding to one of the primitive types. No type casting
is allowed. Assigning a literal to a variable of mismatching type will cause an error.

Integer literals

Integer literals are optionally-signed sequences of digits (0-9), which represent whole numbers
and are in decimal format. A negative integer literal can be indicated using the ‘-> character.

Float literals

Float literals are optionally-signed sequences of digits (0-9), which contains a ‘.’ with at least
one digit before it. A negative float literal can be indicated using the -’ character. E.g.

0.9 9.0 9.999

Boolean literals
Boolean literals can take on the values of true or false.

String literals
String literals are sequences of zero or more characters enclosed in double quotes. If a quotation
character is desired in the literal, either the non-desire quotation character must be used to
contain the literal or the quotation character within the literal must be escaped. Escape characters
include:

\n for new line

\t fortab

\r for carriage return

A\ for backslash

\7” for double quotes

3.2.4 Delimiters

Parentheses

Parentheses are used to enclose arguments to function calls, expressions within control flow
statements, and for defining explicit order of operations within arithmetic and logical
expressions.

Commas
Commas are used to separate elements within coordinates and to separate arguments within
function calls.

Square brackets
Square brackets are used for coordinate initialization, assignment, and access. They are also used
for accessing the grid.

Curly braces
Curly braces are used to define the scope of blocks of code, such as tiler’s special code blocks
and other user-defined function and class blocks.

Semicolons
Semicolons are used to indicate end of statement.

Period
Periods are used to access attributes of objects.

Whitespace
Whitespace is used to separate tokens, but is otherwise ignored by the compiler and used for
programmer readability only.

Comments
Comments can be made using the single-line notation // or multi-line comments can be
enclosed within /* and */

3.3 Expressions

Valid expressions include literals, binary operations, unary operations, assignments, function
calls, variables, object instantiation and assignment, and grid assignment and access. The
following are binary and unary operators and listed in order of increasing precedence.

3.3.1 Binary Operators

Assignment assigns a value to a variable. Assignment is right associative and is supported for all
primitive and non-primitive types. E.g.

expression = expression

And returns true if the left-hand and right-hand expressions are both true and returns false
otherwise. And is left associative and is supported for boolean types only. E.g.

expression && expression

Or returns true if either the left-hand or right-hand expressions is true and returns false otherwise.
Or is left associative and is supported for boolean types only. E.g.

expression || expression

Equals returns true if the values of the left-hand and right-hand expressions are equal and returns
false otherwise. Equals is left associative and is supported for integer, float, boolean, and string

types. E.g.

expression == expression
Not equals returns true if the values of the left-hand and right-hand expressions are not equal and
returns false otherwise. Not equals is left associative and is supported for integer, float, boolean,
and string types. E.g.

expression != expression
Greater than returns true if the left-hand expression is greater than the right-hand expression and
returns false otherwise. Greater than is left associative and is supported for integer and float
types only. E.g.

expression > expression

Less than returns true if the left-hand expression is less than the right-hand expression and
returns false otherwise. It is left associative and is supported for integer and float types only. E.g.

expression < expression

Greater than or equal returns true if the left-hand expression is greater than or equal to the
right-hand expression and returns false otherwise. Greater than or equal is left associative and is
supported for integer and float types only. E.g.

expression >= expression
Less than or equal returns true if the left-hand expression is less than or equal to the right-hand
expression and returns false otherwise. Less than or equal is left associative and is supported for
integer and float types only. E.g.

expression <= expression

Addition adds the two values on either side of the operator. Addition is left associative and is
supported for integer and float types only. E.g.

expression + expression

Subtraction subtracts the right-hand operand from the left-hand operand. Subtraction is left
associative and is supported for integer and float types only. E.g.

expression - expression

Multiplication multiplies values on either side of the operator. Multiplication is left associative
and 1s supported for integer and float types only. E.g.

expression * expression

Division divides the left-hand operand by the right-hand operand. Division is is left associative
and 1s supported for integer and float types only. E.g.

expression / expression

Modulus divides the left-hand operand by the right-hand operand and returns the remainder.
Modulus is left associative and is supported for integer types only. E.g.

[e)

expression % expression

3.3.2 Unary Operators

! Logical negation is supported for boolean types only.
- Numeric negation is supported for integer and float types only.

3.4 Statements

Statements in tiler can consist of a single expression or the following control flow statements.

3.4.1 Return statement

Returns a value from a from a function. Return may not be followed by a value, such as when a
function returns void.

return true;
return;

3.4.2 Conditional statement

Conditionally runs code inside curly braces denoted by these statements.

if (condition) { statements }
if (condition) { statements } else { statements }
if (condition) { statements } else i1f (condition) { statements

}

343 while loop

Runs code inside curly braces if condition specified by the while loop is true.
while (condition) { statements }

344 do while loop
Alternative form of the while loop where the actions are written first followed by the condition.

do { statements } while (condition);

345 forloop

Parameters for iteration are an expression specifying start index, an expression specifying end
condition, and an expression to increment/decrement the index.

for (1 = 0; i < end; 1i=i+1) { ... }
3.5 Data Types

3.5.1 Primitive Types

int

Can take on the values of integers. An integer is a two’s complement signed 32-bit integer
number. Operations include: +, -, *, /, %, ==, =, <, >, <=, >=

int x; x = 5;

float
Can take on values of floating point numbers with a mantissa and exponent. It is a two’s
complement signed 64-bit floating bit number. Operations include: +, -, *, /, ==, !=,

bool

Can take on the value of true or false. Operations include: ==, !'=, !, &&, ||
bool b;
b = true;

string
Can take on the value of any sequence of one or more characters. String must always written
between double quotes. String comparison is done through == and !=

string s;

s = “Hello World!”

coord
A coord is a built-in datatype representing a pair of integers, representing a coordinate on the
grid. The datatype is composed of an x and y value which are enclosed in square brackets and
separated by a comma. A coordinate can be declared and assigned to a variable as follows.
coord c;
c = [1, 2];

The values of a coordinate can be accessed by specifying x or y in square brackets.
c[x] and c[y]

3.5.2 Non-primitive Types

Object

An object is anything that can be placed on the grid (see next section on grid). An object is
composed of a collection of attributes of primitive types. An object can have any number of
attributes, which are defined in the class block which it is an instance of. An example of a class
defining a Piece object is as follows:

class Piece {
attr: string player;
attr: string team;

An object must be declared with its class name in angled brackets, then instantiated and assigned
to a variable. E.g.

<Piece> piece;

piece = new Piece (“Bob”, “red”);

An object’s attributes may be accessed as follows:
piece.player;
piece.team;

An object also contains implicit attributes for its grid location, named x and y. These values will
be NULL if the object has not been placed on the grid yet. They also may be accessed like
attributes. E.g.

piece.x;

pilece.y;

The call to isNull takes an object as argument and returns an integer 1 if the current object is
NULL and 0 otherwise. E.g.
isNull (piece);

The call to setSprite takes an object and string as argument. The string contains the filepath to a
Bitmap image for the object sprite or display image. E.g.
setSprite (piece, “piece.bmp”);

Grid
A 2D array of objects. The grid should be initialized in the init block (see Program Structure).
On grid initialization, all objects on the grid are NULL. E.g.
init {
tile (3, 3);

To access the object at a grid location:
<Piece> piece;
piece = grid[2, 3];

To assign an the object to a grid location:
grid[2, 3] = piece;

To remove the object at a grid location, assign NULL to the grid location:
grid[2, 3] = NULL;

3.6 C(Classes

3.6.1 Default Attributes

Each class by default has attributes for x and y, two integers which also store the coordinates of
the object on the grid where x is the row and y is the column. Default attributes are only
modifiable by the language’s built-in functions, not through assignment. However, they can be
accessed by the programmer and operated on according to their types.

3.6.2 Instantiation
Instantiation uses the new keyword. Programmer lists class name, then in parentheses assigns the
values of each of the attributes defined in that class, formed as a comma-separated list and in the
same order as how attributes are defined in the class. See Section 3.6.2 for more details.

piece = new Piece (“Bob”, “red”);

3.6.3 Object class type

Programmer can assign an object of any type to a variable of type Object

3.6.4 Assignment
Use the = operator for assignment. Syntax: [LHS] = [RHS]. Can only assign an object to an
expression which has the same type, or object type.

3.7 Scope & Variable Declarations

3.7.1 Global declarations

Global declarations are made outside of all code blocks and because its scope is global, it is
accessible throughout the program in any block. Declarations consists of two elements: type
name and identifier. Globally scoped variables may only be of primitive types, so the type name
is one of the reserved words int, float, string, bool, coord

3.7.2 Local declarations
Local declarations are made inside code blocks and must be made at the top of each code block,
before other statements. The scope is the block in which they are declared. In addition to
primitive types, objects may also be declared locally. Therefore, the type name is either the
reserved word for a primitive type (int, float, string, bool, coord), or it is a class name with
angled brackets. E.g.

int count;

<Piece> piece;

3.7.3 Attribute declarations
Attribute declarations define attributes of classes using the reserved word attr. Attribute
declarations may only happen within the class blocks. Attributes may only be of primitive types,
and the programmer specifies the type followed by name. E.g.

attr string player;

attr int lives;

3.7.4 Non-primitive type declarations
As mentioned in Section 3.7.2 on Local Declarations, objects can only be declared locally using
the class name in angled brackets followed by an identifier. E.g.

<Piece> pl;

The grid must be declared only once in the program, and declaration must be in the init block.
Uses keyword ti1e and takes two integers representing the number of objects in each row and
column as arguments.

tile (4,4);

3.8 Functions

3.8.1 User-Defined Functions

User can define a function, functionName, that takes a list of arguments and returns a type of
returnType. If functionName does not have a return type, returnType should be set to void.

int functionName (arguments) {

// developer code here

To call the function, use the functionName followed by a comma separated list of parameters in
parentheses.
functionName (arguments) ;

3.8.2 Built-In Functions

Board Specific Functions
e tile(x,Vv)
Generates a board defined by a grid of x tiles wide by y tiles tall.

® Dbackground(“filePath”)
Sets the background of the board to an image specified by the file path. Currently, tiler
only supports Bitmap images, ending with the extension .bmp

Input-Output Specific Functions
® capture();
Returns the coordinate of the tile that is selected by the mouse cursor

e iprint(0); iprint (true);
Take an integer or boolean as its single argument and prints to terminal.
e fprint(1.0);

Take a float as its single argument and prints to terminal.

® sprint (“Hello World”);
Take a string as its single argument and prints to terminal.

close();
Closes the game window.

Object Functions
® setSprite(obj, imgFile);
The call to setSprite takes an object and string as argument. The string contains the file
path to a Bitmap image for the object sprite or display image.

e isNull (obj):;

The call to isNull takes an object as argument and returns an integer 1 if the current
object is NULL and 0 otherwise.

3.9 Context Free Grammar

program - wflags decls EOF
wflags - ¢ wflags wflag
wflag — TITLE STRING LITERAL | SIZE INT LITERAL INT LITERAL | COLOR

INT LITERAL INT LITERAL INT LITERAL
Decls — ¢ | decls vdecl | decls class decl | decls block
typ — INT | FLOAT | BOOL | STRING | COORD | OBJ | VOID
vdecl list - & | vdecl list vdecl

vdecl - typ ID SEMI | LT ID GT ID SEMI

20

class decl — CLASS ID LBRACE attr decl list RBRACE

attr decl list - e | attr decl list attr decl

attr decl — ATTR COLON typ ID SEMI

block — init block | turn block | end block | fdecl block
init block - INIT LBRACE vdecl list stmt list RBRACE
turn block - TURN LBRACE vdecl list stmt list RBRACE

fdecl block - typ ID LPAREN formals opt RPAREN LBRACE vdecl list stmt list
RBRACE

formals opt - ¢ | formal list

formal list - typ ID | formal list COMMA typ ID

end block — END LBRACE vdecl list stmt list RBRACE

stmt list - € | stmt list stmt

stmt — expr SEMI | RETURN SEMI | RETURN expr SEMI | LBRACE stmt list
RBRACE | IF LPAREN expr RPAREN stmt $prec NOELSE | IF LPAREN expr
RPAREN stmt ELSE stmt | FOR LPAREN expr opt SEMI expr SEMI expr opt
RPAREN stmt | DO stmt WHILE LPAREN expr RPAREN SEMI | WHILE LPAREN
expr RPAREN stmt

expr_ opt - ¢ | expr

expr — INT LITERAL | FLOAT LITERAL | STRING LITERAL | TRUE | FALSE | obj
| expr PLUS expr | expr MINUS expr | expr TIMES expr | expr
DIVIDE expr | expr MOD expr | expr EQ expr | expr NEQ expr | expr
LT expr | expr LEQ expr | expr GT expr | expr GEQ expr | expr AND
expr | expr OR expr | MINUS expr %prec NEG | NOT expr | LPAREN expr
RPAREN | obj ASSIGN expr | NEW ID LPAREN actuals opt RPAREN | ID
LPAREN actuals opt RPAREN | LSQUARE expr COMMA expr RSQUARE | ID
LSQUARE ID RSQUARE | GRIDW | GRIDH | NULL
obj — ID | ID PERIOD ID | GRID LSQUARE expr COMMA expr RSQUARE

actuals opt - ¢ | actuals list

actuals list - expr | actuals list COMMA expr

21

4. Project Plan

4.1 Process

4.1.1 Planning and development process

Throughout the first two-thirds of the semester, we met in person once or twice a week to iterate
over our design, implement more functionality to our language, and delegate assignments for our
next meetings. We also spent half an hour each week meeting with our (extremely helpful!) TA
Freddy to get input on our designs and deliverables.

At the beginning of the semester, our first few meetings were about what kind of language we
wanted to build, what kind of target audience our language would have, and how we might want
to implement such a language. We also assigned roles early on, so that people would know what
they were accountable for and could start taking initiative on certain parts of the language
(although certainly people were still fluid within their roles). We also spent a lot of time writing
sample games in our proposed language, to see what functionality would be most important to a
potential tiler programmer. As the semester wore on, we began to do more work outside of
meetings and spend in-person meeting time on things like debugging.

4.2.2 Project management

We used Git as our version control system, maintaining a private repo on GitHub with a master
branch that required pull request approval from at least one other member of the team before
merging. During meetings, careful notes were taken and stored in a group Google Drive so that
anyone who missed meetings could get caught up quickly. Furthermore, we maintained a task
board using the ZenHub extension in GitHub. This allowed us to efficiently keep track of a
backlog of tasks/bugs, who was working on what, whether there were any code dependencies,
and general progress on our language.

4.2 Roles and Responsibilities

Throughout the course of the project, our team members were flexible about what they were
working on. While everyone was assigned a role, we all contributed to the codebase in various
ways. Nonetheless, the official role assignments on our team were as follows:

Tester - Jacky

Manager - Jason

System Architects - JY and Evan
Language Guru - Monica

22

Team Member Responsibilities

Jacky Cheung Testing suite setup and tests, print & comment (scanner/codegen),
semant

Jason Lei Initial ast/scanner setup, tests, code blocks (end to end), window flags,
Calculator demo

Jiayin Tang Hello World codegen, variable declaration (codegen), classes (end to
end), semant, Tic Tac Toe sprites

Monica Ting Language design, variables/primitives/coordinates (end to end), control
flow statements (end to end), Hello World demo, Tic Tac Toe demo

Evan Ziebart runtime library, classes, window flags, semant

4.3 Timeline

Week Milestones Deliverables
Sep 17 | Assign roles
Brainstorm language ideas
Sep 24 | Write sample games in language Project Proposal due on 9/26
Oct 1 Git repo setup
Oct 8 Figure out language keywords and operations
Oct 15 | Finalize CFG LRM due on 10/16
Oct 22 | Scanner and parser can handle .tile program
Set up runtime library
Oct 29 | Run tiler-caller program in runtime library
Nov 5 Connect runtime library functions in codegen Hello World due on 11/8
Nov 12 | Build test framework
Nov 19 | Add blocks to parser
Dec 3 Add additional functionality to blocks

23

Add interactivity to tiler programs

Dec 10 | Add functions and classes Final demo on 12/19
Add semantic checking Report due on 12/20
Prepare for demo (slides, sample programs)
Write final report

4.4 Software Development Environment

We developed locally on our computers (Mac OS 11 and Windows 10), using a combination of
vim and Sublime Text. We developed using OCaml 4.0.6.0, Bash, and C (for the runtime
library). As mentioned earlier, we used Git and GitHub for our version control and ZenHub for
our task management. We used Google Drive for meeting notes.

4.5 Style Guide

The following style guidelines were used by the group:

Give variables readable names

Adhere to Micro-C style for scanner, parser, ast, codegen

Comment large code blocks and/or code that does not perform obvious functionality
Indentation size of 2

Break long lines of code into multiple lines

4.6 Project Log
Github Timeline:

Sep 17, 2017 — DeC 20’ 2017 Contributions: Commits v

Contributions to master, excluding merge commits

40

20

w
1=

ep 17 Sep24 October Oct 08 Oct 15 Oct 22 Oct 29 Nov 05 Nov 12 Nov 18 Nov 26 Dec 03 Dec 10 Dec 17

24

5. Architectural Design

5.1 Block Diagram

5.2 Compiler Components

The compiler for the tiler language was written in Ocaml and compiled using the ocamlopt
compiler. The .tile source code is processed via a series of passes, ending with the generation of
code formatted in LLVM IR. The LLVM is then linked with the runtime library and converted
into the .game executable file. Below is the ordering of compilation, and a description of the
code which corresponds to each step.

1.) Scanning (scanner.mll): This step inputs the .tile source code and converts it into an
ordered list of tokens. The .mll file specifies a regular expression to defines each token in
the language. Ocamllex is used to generate the ocaml source code.

25

2.) Parsing (parser.mly): This step inputs the lexical tokens found in the previous step and
converts them into an abstract syntax tree for the tiler program. The type names for the
abstract syntax tree are defined in ast.ml. The .mly parser file specifies the context-free
grammar for the tiler language. Ocamlyacc is used to generate the ocaml source code
which uses this grammar to produce an abstract syntax tree from the tokens.

3.) Semantic-Checking (semant.ml): This code inputs the abstract syntax tree and parses it to
check for semantic errors. If semantic errors are found (such as duplicate variable or
incorrect function arguments), then the program prints an appropriate error message.

4.) Code Generation (codegen.ml): This code inputs the semantically-checked abstract
syntax tree and outputs an LLVM IR module containing the corresponding code that the
tiler program generates.

The top-level program is contained within tiler.ml. This code inputs the program, calls the
scanner and parser to generate an AST, asserts a semantically correct program, and generates the
LLVM IR code.

The following options are available:
-a (ast): outputs the AST for the tiler program
-1 (Ilvm): outputs the LLVM IR code for the program
-c (compile): outputs the LLVM IR code to a .1l file to be compiled into an executable

5.3 Tiler Runtime Library

The tiler runtime library provides a suite of utilities for the tile game executable code. The
generated code links to this library and calls these utilities at runtime. The main use of the tiler
runtime library is to manage a game window, which is done with the Simple Direct Media-Layer
(SDL) library in C.

5.3.1 SDL Summary

The Simple Direct Media-Layer (SDL) Library is a robust suite of tools for working with
graphics and windows in the native operating system. The tiler runtime makes use of some of the
basic functionalities of this library. These features include interfacing with the window, loading
images, rendering graphics on the window, working with threads, and capturing window events
and user mouse input. SDL has ports to many different languages, but the tiler runtime library
uses the original version written in C.

5.3.2 Tiler-lib Functionality

The tiler runtime library supports several important features in the tiler language.

26

create the game window
listen for SDL events
manage the tile grid

run the main game loop
manage memory for objects

load and render appropriate images to the window

Game Window: The code to create the game window is in tiler-main.c. When runGame() is
called, it calls the SDL functions which create the new window and set it to be viewable.

Event Listening: The main event loop is in tiler-main.c. It ensures proper exiting of the window
and listens for mouse clicks on the grid. When a mouse click occurs, the program records the
grid coordinate which was clicked. The getMouseCoords() function in tiler-mouse.c can be used
to access this data.

Grid: The tiler-grid.c file contains the functions for creating and accessing the tiler grid. Objects
can be placed on the grid, or removed from the grid, and object at a given grid coordinate can be
accessed.

Game Loop: The tiler-main.c code is responsible for running the game loop. The runtime library
obtains function pointers to the init, turn, and end blocks through calls to the set functions
defined in tiler-functs.c. The gameLoop() function in tiler-main.c calls these in the appropriate
order, and returns once the game is over.

Object Memory: The tiler runtime library keeps references to all declared objects in a tiler
program. It also keeps track of default attributes for objects, such as xy-coordinate and sprite,
and provides accessor functions for these values. Each time an object is declared, the tiler
program calls the createObject() function defined in the tiler-object.c file in order to initialize
these default attributes and set up a reference to the new object. These references are kept in a
list. Any object not on the grid has a reference in this list, and at the end of each turn, the list in
cleaned, freeing the memory for each object in it. Thus, the library automatically handles the
garbage collection of tiler objects.

Drawing to the Window: The draw() function in tiler-main.c uses an SDL renderer to draw the
background and grid objects to the screen. The sprite for each object is automatically drawn at
the location on the screen which corresponds to the grid location that it occupies. This rendering
process also utilizes back buffering to prevent flickering in tiler games.

27

6. Test Plan and Scripts

6.1 Testing Plan

6.1.1 Overview

The idea behind testing is to ensure that already designed functionalities continue to work as
expected. In addition, test files were made ahead of feature implementation to provide direction
to feature implementation. This allows for easy checking of progress on feature implementation
and any potential negative effect on already existing features. Fail cases were designed to
demonstrate what should not be allowed in the language and needed to be handled by semantic
checking. The idea is that that non-compilable/non-executable programs written in tiler fail as
intended (in which case it will be regarded as a success in correctly recognizing situations that
would lead to failure). Thus, testing was done in parallel with the development of the tiler
language to give direction for troubleshooting assessing the progress of feature implementation.

6.1.2 Testing Complications

Tiler is intrinsically a language developed for 2D turn-based games. Thus, a significant portion
of the language involves graphics and user interaction. An initial problem in automation was that
game windows had to manually be closed to proceed. This would make testing semi-manual and
rather tedious as someone would have to manually close each window associated with a test case
to progress the testing script. Obviously, this would not scale well and a close() function was
designed to close the game window when it was called as an easy solution. The close() function
was designed specifically for testing automation and would really not be used elsewhere (except
for closing a window automatically after a game ends). As such, all test cases should eventually
call the close() function for the sake of automation.

However, such testing could only be done to mainly check that the language’s logic/arithmetic
functionalities were implemented correctly. The actual game behavior still requires manual
testing since the graphical component is the main focus of tiler and difficult to automate. This is
mainly because games requires user input/interaction and decision making. The underlying
behaviour can be tested for through the use of print functions, but the visuals also require manual
testing and examination to ensure that the language is behaving as expected. Thus, although parts
of the language can be tested automatically with a script, manual testing is still required.

6.1.3 Unit Testing & Integration Testing

Unit testing was performed to ensure that individual functionalities were behaving properly.
Initially, these may be done locally in order to focus on the functionality of one aspect of the

28

language. Eventually, this gets incorporated a collection of test and fail cases for integration
testing. Integration testing ensure that the addition of new functionalities does not cause older
ones to fail. Thus, test cases were designed with and catered to individual features in mind. This
was particularly important for control flow elements of the language. Overall, everyone
contributed to testing and the use of the test suite helped to facilitate the process by automating
regression and integration testing throughout the design process.

6.2 Test Suite

6.2.1 Design and Description of Testing Script

The tiler language’s testing suite took advantage of the regression testing suite established in the
provided MicroC. In terms of execution is effectively the same, with minor changes in file
location and naming schemes for generated files. Changes were made mostly for housekeeping.
To run the test suite, the Makefile associated with tiler must be present as the script takes
advantage of “make <file>.test”, a phony command designed to properly compile .tile test cases.

To run the test suite, ensure that tiler.native is available and run ./testall.sh on the command line
in terminal. It can be executed with a -k flag to keep all intermediate files or a -h flag for a
help/usage message. Overall, the testing suite allowed the team to do regression testing on older
features to ensure these features still worked as intended on test cases; and that the semantic
checking is working as intended on fail cases by failing as intended. The locations of all files
were intentionally designed for ease of access for troubleshooting when test cases did fail.

Test cases are located in a folder named tests on the same directory as the tiler source code; and
named with test-<name>.tile and fail-<name> - where test files are meant to check that features
function as intended and fail files are meant to check that compilation fail in an expected why
and for testing the language’s semantic checking. Like the MicroC testing suite, the output of
compiling and executing these test/fail cases are saved in a .gen file and compared with .out/.err
files using diff. If test cases fail to compile, intermediate files (i.e. the associated .gen, .1l, and
(diff files) are saved in tests directory for easy access. On success, these intermediate files
deleted by default. Logs of the entire testing process is stored in a testall.log file. It is important
that the naming scheme is consistent in order for the script to run correct. Specifically,
test-<name>.tile and fail-<name>.tile must have a corresponding test-<name>.out and
fail-<name>.err respectively. In summary, the testing suite is essentially the MicroC testing suite
that was modified and developed by the team tester Jacky.

6.2.2 Testing Script Code Listing

Regression testing script for Tiler
Modified from the MicroC testall.sh

Time limit for all operations:

ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0

How to use testall.sh:
Usage() {
echo "Usage: testall.sh [options] [.tile files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1

}

Report any errors
SignalError() {
if [$error -eq ©] ; then
echo "FAILED"
error=1
fi
echo " $1"
}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, are written to difffile
Compare() {
generatedfiles="¢$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>8&2

}

Run <args>
Report the command, run it, and reports any errors

Run() {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
}
}

RunFail <args>
Report the command, run it, and expect an error
RunFail() {

echo $* 1>8&2

eval $* && {
SignalError "failed: $* did not report an error"
return 1
}
return 0
}
Check() {
error=0

basename="echo $1 | sed 's/.*\\///

29

s/.mc//""
relPath="echo $1 | sed 's/.tile//"
reffile="echo $1 | sed 's/.tile$//""
basedir=""echo $1 | sed 's/\/[~"\/]1*$//' /."

echo -n "$basename..."

echo 1>&2
echo "#####H# Testing $basename" 1>&2
generatedfiles=""

generatedfiles="$generatedfiles ${relPath}.1l ${relPath}.o ${relPath}.exe ${relPath}.gen
${relPath}.diff" &&

Intermediate files are placed in tests directory

Run "make ${relPath}.test > /dev/null" &%&
Run "./${relPath}.exe" > "${relPath}.gen" &&
Compare ${relPath}.gen ${reffile}.out ${relPath}.diff

Report the status and clean up the generated files

if [$error -eq ©] ; then
if [$keep -eq @] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "##t#t### FAILED" 1>&2
globalerror=$error

fi
}
CheckFail() {
error=0
basename="echo $1 | sed 's/.*\\///

s/.mc//""
relPath="echo $1 | sed 's/.tile//"
reffile="echo $1 | sed 's/.tile$//""
basedir=""echo $1 | sed 's/\/["\/1*$//' /."

echo -n "$basename..."

echo 1>&2
echo "##i#### Testing $basename" 1>&2

generatedfiles=

generatedfiles="$generatedfiles ${relPath}.1l ${relPath}.gen ${relPath}.diff" &&
RunFail "make ${relPath}.test 2> ${relPath}.gen 1> /dev/null" &&
Compare ${relPath}.gen ${reffile}.err ${relPath}.diff

Report the status and clean up the generated files

if [$error -eq ©] ; then
if [$keep -eq @] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "#i#t###t SUCCESS" 1>&2

30

else
echo "###### FAILED" 1>&2
globalerror=$error
fi
}

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files
keep=1
h) # Help
Usage

esac
done

shift “expr $OPTIND - 1°

if [$# -ge 1]

then
files=%@
else
files="tests/test-*.tile tests/fail-*.tile"
fi
for file in $files
do
case $file in
test-)
Check $file 2>> $globallog
fail-)
CheckFail $file 2>> $globallog
*))
echo "unknown file type $file"
globalerror=1
esac
done

exit $globalerror

31

32

7. Language Evolution

Tiler was originally designed based off of popular 2D tiled board games, such as tic-tac-toe,
chess, checkers, Monopoly, etc. Typically for these types of board games, the game set comes
with a set number of pieces and the physical types of pieces are always the same. Therefore, we
thought it made sense to to enumerate the possible attributes a class could have. Each
permutation is a different “state” representing a different piece in the game. For example, in
chess, the class would be defined as follows:

class Piece {
attr: string player = [“black”, “white”];
attr: string role = [“pawn”, “rook”, “knight”, “bishop”, “queen”, “king”];

However, as we began building up the tiler language, we realized enumerating attribute values
did not transfer well over for floating point numbers. It would not be possible for a programmer
to specify a range of float, and specifying a range of integers would be a hassle to list out.
Additionally, it is not very useful to enumerate Boolean attributes since there are only two states
anyways. Therefore, we decided to remove the capability for programmers to enumerate
attributes in the class definition. This also simplified the our codegen and runtime library, since
we did not need to save information on all possible values for each attribute anymore, and we did
not need to do the semantic checking to make sure the user assigned a valid value for the
attribute. This change actually made our language more flexible, because now programmers can
assign any matching type value to each attribute, similar to classes in Java.

Another design change in our language was our handling of objects on the grid. In our original
proposal, we decided to give users the flexibility to put objects in a new grid location in multiple
ways. For example, the programmer could specify move on the object:

piece.move (0, 3);
Or the programmer could assign an object to a grid location:

grid[0, 3] = piece;

Originally, we allowed for this flexibility in the language so that programmers could think from
either the perspective of an object or from the perspective of the grid. However, the redundancy
actually created more problems as we considered what would happen when the programmer tries
to move a piece to a location that already has another object? If it replaces the object on the grid,
we also needed to consider what happens to objects that currently do not have a position on the
board and how those objects should be kept track of and freed. In the end, we decided to only use

33

the second notation centered around the grid and adjusted the rest of our language similarly. For
example, to remove an object from the grid, use:

grid[0, 3] = NULL;
rather than:

piece = grid[0, 3];

piece.remove () ;

8. Lessons Learned

8.1 Member Reflections

8.1.1 Jason

This project was honestly eye-opening in ways that I did not anticipate. Seriously, seriously start
early. And by start early, | mean start implementing things early. Iterate quickly, break things
quickly. Don’t spend all of your time thinking and planning. It is definitely possible to meet once
or twice a week for the first half of the semester and still have no clue about what you’re actually
trying to do. Instead spend that time taking a stab at implementing a scanner and parser. Get
familiar with a compiler’s structure and ocaml’s syntax, so that once you do figure out what
you’re trying to do, you’ll at least have an idea of how you will implement it. Lastly, learn how
to delegate tasks properly and accept that everyone has a different style of working. Not
everyone likes to meet in person, not everyone likes to work well ahead of the deadline. But as
long as you and your group communicate well and frequently, things will work out. Don’t lose
hope!

8.1.2 Monica

Generic advice...start early! For me personally, all the new code from microc and past projects
was really overwhelming to get all at once, and that’s why I think I enjoyed the ideation and
design process of the language more fun than actually getting myself to sift through the
microc-compiler. The first few weeks was a lot of drawing out ideas on paper and as Language
Guru, dishing out different syntactic ways of making our language attractive and intuitive for a
gaming language. Instead, time would probably have been better spent on implementing the
syntax of our language early on by completing the scanner, parser, and AST all at the beginning.

I think we also could have benefitted from more pair programming; since OCaml is definitely a
hard language to pick up within a few weeks, having another pairs of eyes would’ve definitely
sped up that debugging process.

34

8.1.3 Evan

For me, the most important lesson is that figuring out the “how” of something is more important
that the “what”. At the start of this project, my teammates and I took great care in designing our
language to be just how we wanted it, but we were at that point still unaware of how our
compiler should work, and what vision was feasible given our time constraints. In the end, our
language evolved quite a bit because we found that some things which we thought would be easy
turned out to be challenging, and some things we thought would be hard turned out to be simple.
From that wasted time at the start, I learned that it’s better to have a general idea and a prototype
than a super-detailed vision with nothing to show for it.

8.1.4 Jacky

As all my teammates already said, start this project early. My advice is to play around with
OCaml at the beginning and getting a basic understanding of and feel for the language. You will
undoubtedly be looking at a lot of OCaml code, so get comfortable looking at it and
understanding it. More likely than not, you will be pretty bad at anything OCaml-related, but it
gets better with practice, sort of... That being said, this was the first time [worked on a long-term
group project at Columbia and I appreciated the constant communication and celebration of
every milestone. In addition, working in pairs tended to work well as you get to have an extra
pair of eyes and bounce ideas for troubleshooting and move-forward with another person. Also,
have a dedicated workplace that is kept relatively clean and make sure your teammates are fed
and hydrated. The project is hard enough as is, so no need to make it any harder. My last word of
advice is that OCaml is a ridiculously concise language, so make a habit of looking at any
changes to your team’s code to stay of top of any changes.

8.1.5JY

Looking back on this semester, I am surprised to realize that we did start rather early...but we
spent a lot of time in the ideas phase of our project. We met several times early in the semester
and had long discussions about what we wanted our language to do. Everything looked nice on
paper once we decided on the details, but the hardest part was implementing it. Our Hello World
milestone was one of the hardest things for us as we all struggled with Ocaml and the Codegen. I
remember asking Freddy how to do something in Codegen and still feeling lost about how to
actually write it in Ocaml after hearing his answer. However, once I got over the learning curve I
felt much more comfortable. My biggest takeaway from this project is to just jump into the
AST/Scanner/Parser as soon as possible to familiarize yourself with the language, and to not be
afraid of the Codegen. Even if you write a line that looks incredibly wrong, compile it and see
what it actually does and what error it gives. Other advice: pair program, and find a team that
communicates well and commits to meeting every week at those times. I really appreciated that
my team met at least twice every week without fail. Pair programming was also incredibly

35

helpful near the end, as having a second set of eyes to debug errors made the process more
efficient.

9. Demos

9.1 helloworld.tile
init {
tile(3, 3);
background("./sprites/hello.bmp");
}

Hello World

9.2 tictactoe.tile

tic tac toe

#fsize 600 600
t#tcolor 198 222 255
#title "tic tac toe"

coord mouse;
coord endIter;
bool edTurn;
int x; int y;

36

class Piece {
attr: string player;

init {
tile(3, 3);
background("./sprites/tictactoe_board.bmp");
edTurn = true;

turn {
<Piece> p;
do {
mouse = capture();
} while(isNull(grid[mouse[x], mouse[y]]) == 0);

if (edTurn) {
p = new Piece("burger");
setSprite(p, "./sprites/burger.bmp");
} else {
p = new Piece("Prof. Edwards");
setSprite(p, "./sprites/lolwards.bmp");

grid[mouse[x], mouse[y]] = p;
edTurn = l!edTurn;

end {
<Piece> pl; <Piece> p2; <Piece> p3;
string player; bool isFull;

for (x=0; x<gridh; x=x+1) {
pl = grid[x, 0];
p2 = grid[x, 1];
p3 = grid[x, 2];

if (isNull(pl) == © && isNull(p2) == © && isNull(p3) == 0)
player = pl.player;
if (player == p2.player && player == p3.player) {
sprint(player); sprint("wins");
return 1;

for (y=0; y<gridw; y=y+1) {
pl = grid[e, y];
p2 = grid[1, y];
p3 = grid[2, yI;

37

if (isNull(pl) == © && isNull(p2) == © && isNull(p3) == 0) {
player = pl.player;
if (player == p2.player && player == p3.player) {
sprint(player); sprint("wins");

return 1;
}
}
¥
pl = grid[e, 0];
p2 = grid[1, 1];
p3 = grid[2, 2];

if (isNull(pl) == © && isNull(p2) == © && isNull(p3) == @) {
player = pl.player;
if (player == p2.player && player == p3.player) {
sprint(player); sprint("wins");

return 1;
}
}
pl = grid[e, 2];
p2 = grid[1, 1];
p3 = grid[2, 0];

if (isNull(pl) == © && isNull(p2) == © && isNull(p3) == 0) {
player = pl.player;
if (player == p2.player && player == p3.player) {
sprint(player); sprint("wins");
return 1;

isFull = true;
for (x=0; x<gridh; x=x+1) {
for (y=0; y<gridw; y=y+1) {
pl = grid[x, y];
if (isNull(pl) == 1) {
isFull = false;

if (isFull) {
sprint("tie!");
return 1;

38

39

9.3 calculator.tile

Wélcome to tiler calculator!
Click on the burger to quit.

I W~

w

Next calculation?
Click on the burger to quit.

ol wxN

=

Next calculation?
Click on the burger to quit.
Game over.

#size 600 600
#color 181 234 170
#title "Calculator GUI"™

int x; int y;

int result;

int current;

int current_power;
string current_op;
bool start_of_num;
bool start_of_expr;
coord mouse;

string p; string s;
string m; string d;
string e; string q;

class Num {

attr: int value;
}
class Op {

attr: string op;

init {

<Num> n@; int count;

<Num> nl; <Num> n2; <Num> n3;
<Num> n4; <Num> n5; <Num> n6;
<Num> n7; <Num> n8; <Num> n9;
<Op> plus; <Op> minus;

<Op> divide; <Op> times;

<Op> equals; <Op> quit;

start_of_expr = true; start_of_num
result = 0;

p="4+"; s = 5omo= MR
d="/" e="" gq="q";

tile(4, 4);
background("./sprites/4x4.bmp");

n@ = new Num(0);
setSprite(n@, "./sprites/@.bmp");
grid[0, 3] = no;

nl = new Num(1);
setSprite(nl, "./sprites/1.bmp");
grid[0, 2] = nl;

n2 = new Num(2);
setSprite(n2, "./sprites/2.bmp");
grid[1, 2] = n2;

n3 = new Num(3);
setSprite(n3, "./sprites/3.bmp");
grid[2, 2] = n3;

n4 = new Num(4);
setSprite(n4, "./sprites/4.bmp");
grid[0, 1] = n4;

n5 = new Num(5);
setSprite(n5, "./sprites/5.bmp");
grid[1, 1] = n5;

n6é = new Num(6);
setSprite(n6, "./sprites/6.bmp");
grid[2, 1] = n6;

n7 = new Num(7);
setSprite(n7, "./sprites/7.bmp");
grid[0, 0] = n7;

= true;

40

n8 = new Num(8);
setSprite(n8, "./sprites/8.bmp");
grid[1, 0] = n8;

n9 = new Num(9);
setSprite(n9, "./sprites/9.bmp");
grid[2, @] = n9;

plus = new Op(p);
setSprite(plus, "./sprites/plus.bmp");
grid[3, 3] = plus;

minus = new Op(s);
setSprite(minus, "./sprites/minus.bmp");
grid[3, 2] = minus;

times = new Op(m);
setSprite(times, "./sprites/multiply.bmp");
grid[3, 1] = times;

divide = new Op(d);
setSprite(divide, "./sprites/divide.bmp");
grid[3, 0] = divide;

equals = new Op(e);
setSprite(equals, "./sprites/equal.bmp");
grid[2, 3] = equals;

quit = new Op(q);
setSprite(quit, "./sprites/burger.bmp");
grid[1, 3] = quit;

sprint("Welcome to tiler calculator!");
sprint("Click on the burger to quit.");

void calculate(){

if (current_op == p){
result = result + current;

if (current_op == s){
result = result - current;

if (current_op == m){
result = result * current;

if (current_op == d){
result = result / current;

41

turn {
<Num> temp_num; <Op> temp_op;
int val; current = 0;

mouse = capture();
while (mouse[x] != 3 && !(mouse[x]==2 && mouse[y]==3) && !(mouse[x]==1 && mouse[y]==3)){
temp_num = grid[mouse[x], mouse[y]];
val = temp_num.value;
current = 10 * current + val;
mouse = capture();

if (!(mouse[x]==1 && mouse[y]==3)){
iprint(current);
¥
if (start_of_expr){
current_op = p;
}
calculate();
start_of_expr = false;
temp_op = grid[mouse[x], mouse[y]];
current_op = temp_op.op;
if (current_op == p){
sprint("+");

}

if (current_op == s){
sprint("-");

}

if (current_op == m){
sprint("*");

if (current_op == d){
sprint("/");

}

if (current_op == e){
sprint("=");
calculate();
iprint(result);

result = 9;
start_of_expr = true;
sprint("Next calculation?\nClick on the burger to quit.");

end {
if (current_op == q){
sprint("Done!");
return 1;

10. Appendix

Appended to the final report are our project source code, which includes:
e Runtime library: authored by Evan

Codegen, AST, scanner, parser: authored by everyone

Makefile: authored by everyone

Demo programs: authored by Monica and Jason

Tests: authored by Jacky and Jason
Appended at the end is the git log history.

10.1 Tiler Compiler

10.1.1 ast.ml

(* Abstract Syntax Tree and functions for printing it *)

type op = Add | Sub | Mult | Div | Mod | Equal | Neq | Less | Leq | Greater | Geq |
And | or

type uop = Neg | Not

type typ = Int | Float | Bool | String | Coord | Obj | Void
type bind =
PrimDecl of typ * string
| OobjDecl of string * string

type expr =
Literal of int

| FloatLit of float

| BoolLit of bool

| stringlLit of string

| 1Id of string

| Binop of expr * op * expr

| Unop of uop * expr

| Assign of expr * expr
| Access of string * string
| call of string * expr list
| CoordLit of expr * expr
| CoordAccess of string * string
| Instant of string * expr list
| GridAccess of expr * expr
| GridCall of string
| Null

| Noexpr

type stmt =
Block of stmt list

| Expr of expr

| Return of expr
| If of expr * stmt* stmt
| For of expr * expr * expr * stmt
| DoWhile of stmt * expr
| While of expr * stmt

type block = {
btyp: typ;
bname : string;
formals : bind list;
locals: bind list;
body : stmt list;

type attr_decl = {

atyp: typ;
aname: string;

}

(* type rule_decl = RuleSet of expr *)

type class_decl = {
cname: string;
attributes: attr_decl list;

}

type flag =
Title of string
| size of int * int
| Color of int * int * int
type program = flag list * bind list * class_decl list * block list

(* Pretty-printing functions *)

let string_of_op = function

Add -> "+"
| sub -> "-"
| Mult -> "*"
| Div -> "/"
| Mod -> "%"
| Equal -> "=="
| Neq -> "1I="
| Less -> "<"
|

Leq -> "<="

44

Greater -> ">

Geq -> ">="
And -> "&&"
or -> "||"
string_of_uop = function
Neg -> "-"
Not -> "I"
rec string_of_expr = function
Literal(l) -> string_of_int 1
FloatLit(l) -> string_of_float 1
BoolLit(true) -> "true"
BoolLit(false) -> "false"
Id(s) -> s
StringlLit(s) -> s
Binop(el, o, e2) ->
string_of_expr el ~ " " ~ string of op o » " " ”~ string_of_expr e2
Unop(o, e) -> string of_uop o ~ string_of _expr e
Assign(s, e) -> string_of_expr s ~ " = " 2 string_of_expr e
Call(f, el) -»>
f ~ "(" ~ String.concat ", " (List.map string_of_expr el) ~ ")"
CoordLit(el, e2) -> "[" ~ string_of_expr el ~ ", " ~ string_of_expr e2 ~ "]"
CoordAccess(sl, s2) -> s1 ~ "." ~ s2
Instant(s, el) ->
"new " A~ s A "(" A String.concat ", " (List.map string_of_expr el) ~ ")"
Access(sl, s2) -> s1 ~ "." ~ s2
GridAccess(el, e2) -> "grid[" ™ string_of expr el ~ ", " ~ string_of_expr e2 ~ "]"
GridCall(s) -> "grid" ~ s
Null -> "NULL"
Noexpr -> ""
rec string_of_stmt = function

Block(stmts) ->

"{\n" ~ String.concat
Expr(expr) -> string_of_expr expr ~ ";\n
Return(expr) -> "return " ~ string_of_expr expr ~ ";\n";
If(e, s, Block([])) -> "if (" ~ string_of_expr e ~ ")\n" ~ string_of _stmt s
If(e, s1, s2) -> "if (" ~ string_of_expr e ~ ")\n" ~

string_of_stmt s1 ~ "else\n" 7 string_of_stmt s2
For(el, e2, e3, s) ->

"for (" ~ string_of expr el ~ " ; " ~ string of expr e2 ~ " ; " A

string _of_expr e3 ~ ") " ~ string_of_stmt s
DoWhile(s, e) -> "do " ~ string_of_stmt s ~ "while (" ~ string_of expr e ~ ")
While(e, s) -> "while (" ~ string_of_expr e ~ ") " ~ string_of_stmt s

(List.map string_of_stmt stmts) ~ "}\n"

string_of_typ = function
Int -> "int"

Float -> "float"

Bool -> "bool"

A u;\nu;

45

String -> "string"

|

| Coord -> "coord"
| obj -> "obj"

| void -> "void"

let string_of_flag = function
Title(title) -> "title: " ~ title ~ "\n"
| Size(w, h) -> "size: " ~ string_of_int w ~ "x" ~ string_of_int h ~ "\n"
| Color(r, g, b) -> "color: " ~ string_of_int r ~ ", " ~ string of_int g ~ ", " *
string of_int b ~ "\n"

let string_of_vdecl = function
PrimDecl(t, id) -> string of typ t ~ " " ~ id ~ ";\n"
| objbecl(idl, id2) -> "<" ~ id1 ~ "> " A id2 & ";\n"

let string_of_attr attr = "attr: " ~ string_of_typ attr.atyp ~ " " # attr.aname ™ ";\n

(* let string_of_rule = function
RuleSet(e) -> "rule: " » string_of _expr e ~ ";\n" *)

let string_of_block block =
string_of_typ block.btyp ~ " " ~
(* block.bname ~ "(" ~ String.concat ", " (List.map snd block.formals) ~ ")\n{\n" ~ *)
String.concat "" (List.map string_of_vdecl block.locals) ~

(List.map string_of_stmt block.body) ~

String.concat
"}\n"

let string_of_classdecl cdecl =

"class " ~ cdecl.cname ~ "{\n" ~
(List.map string_of_attr cdecl.attributes) ~
"" (List.map string_of_rule cdecl.rules) ™ *)

String.concat
(* String.concat
"}\n"

let string_of_program (flags, vars, classes, funcs) =
String.concat "" (List.map string_of_flag flags) ~ "\n" ~
String.concat "\n" (List.map string_of_vdecl vars) ~ "\n" *
String.concat "" (List.map string_of_classdecl classes) ~ "\n" *
String.concat "\n" (List.map string_of_block funcs)

10.1.2 scanner.mll

(* Ocamllex scanner for tiler *)
{ open Parser }

rule token = parse

[" " "\t" "\r" "\n'] { token lexbuf } (* Whitespace *)
VA { multi lexbuf } (* Multi-Line Comments *)
| "//" { single lexbuf } (* Single Line Comments *)
| "init" { INIT }
| "turn"™ { TURN }

46

—_— 1 AN N

~N %

"end"
"class"
"attr"
"new"
"grid"
"gridw"
"gridh"
"NULL"
"#title"
"#size"
"#color"

+ .

53

N
"y
"else"
"for"
"do"
"while"
"return"
"int"
"float"
"bool"
"string"
"coord"
"void"
"true"

{ END }
{ CLASS }
{ ATTR }

{ NEW }

{ GRID }

{ GRIDW }
{ GRIDH }
{ NULL }

{ TITLE }
{ SIZE }

{ COLOR }
{ LPAREN }
{ RPAREN }
{ LBRACE }
{ RBRACE }
{ LSQUARE }
{ RSQUARE }
{ SEMI }

{ COLON }

{ comMmA }
{ PERIOD }
{ PLUS }

{ MINUS }
{ TIMES }
{ DIVIDE }
{ MOD }

{ ASSIGN }
{ EQ }

{ NEQ }

{ LT}

{ LEQ }
{GT}

{ GEQ }

{ AND }
{o }

{ NOT }

{ MOVE }

{ IF }

{ ELSE }

{ FOR }

{ DO }

{ WHILE }
{ RETURN }
{ INT }

{ FLOAT }
{ BOOL }

{ STRING }
{ COORD }
{ voID }

{ TRUE }

47

| "false" { FALSE }
| ['0'-'9"]+ as 1xm { INT_LITERAL(int_of_string 1xm) }
| ['@'-'9"]*"."['0'-'9"]+ | ['@'-'9"]+".'['@'-'9"]* as lxm { FLOAT_LITERAL(float of string

1xm)}

| ['a'-'z" 'A'-'Z']['a'-"'z" 'A'-'Z" '@'-'9" ' '1* as 1lxm { ID(1xm) }
["™t ([~"""]* as 1xm)'""' { STRING_LITERAL(1xm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }
(* Ignoring contents between /* and */ of multi-line comments *)
and multi = parse
ok { token lexbuf }
| { multi lexbuf }

(* Ignoring content beyond // on the same line *)
and single = parse

"\n' { token lexbuf }
| _ { single lexbuf }

10.1.3 parser.mly

%{
open Ast

let first (a,_,_) = a;;

let second (_,b,) = b;;

let third (_, ,c) = c;;
%}

%token INIT TURN END CLASS

%token GRID GRIDW GRIDH NULL

%token NEW ATTR COLON PERIOD MOVE

%token SEMI LPAREN RPAREN LBRACE RBRACE LSQUARE RSQUARE COMMA
%token RETURN IF ELSE FOR DO WHILE

%token TITLE SIZE COLOR

%token INT FLOAT BOOL STRING COORD VOID
%token PLUS MINUS TIMES DIVIDE MOD ASSIGN NOT
%token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR
%token <string> ID

%token <int> INT_LITERAL

%token <float> FLOAT_LITERAL

%token <string> STRING_LITERAL

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%right COLON
%left OR

48

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD
%right NOT NEG

%left ACCESS

%start program
%type <Ast.program> program

%%

program:
wflags decls EOF { (List.rev ($1), List.rev (first $2), List.rev (second $2), List.rev
(third $2)) }

wflags:
/* nothing */ { [] }
| wflags wflag { $2 :: $1 }

wflag:
TITLE STRING_LITERAL { Title($2) }
| SIZE INT_LITERAL INT_LITERAL { Size($2, $3) }

| COLOR INT_LITERAL INT_LITERAL INT_LITERAL { Color($2, $3, $4) }

decls:
/* nothing */ {01, [1, [1}
| decls vdecl { ($2 :: first $1), second $1, third $1 }
| decls class_decl { first $1, ($2 :: second $1), third $1 }
| decls block { first $1, second $1, ($2 :: third $1) }
typ:

INT { Int }
| FLOAT { Float }
| BooL { Bool }
| STRING { String }
| COORD { Coord }
| voID { Void }

vdecl list:
/* nothing */ {I[]1}
| vdecl list vdecl { $2 :: $1 }

vdecl:
typ ID SEMI { PrimDecl($1, $2) }
| LT ID GT ID SEMI { ObjDecl($2, $4) }

50

10.1.4 semant.ml

open Ast
module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if successful,
throws an exception if something is wrong.

Check each global variable, then check each special block *)
let check (flags, globals, classes, special_blocks) =
(* Method for finding duplicates *)

let report_duplicate exceptf list =
let rec helper = function

nl :: n2 :: _ when nl = n2 -> raise (Failure (exceptf nl1))
| _ ::t -> helper t
[[1->0
in
helper (List.sort compare list)

in

(* Access types *)
let get_type ele = match ele with
PrimDecl(t,_) -> t
| objDecl(c,) -> Void
in

(* Method for checking that assignment is legal by comparing types on both sides *)
(* let check_assign lvaluet rvaluet err =

if lvaluet == rvaluet then lvaluet else raise err
in *)

(**** Checking flags ****)
let flag_check wflag = match wflag with
Title(_) -> ()
| size(w,h) ->
if w <=0 || h <= @ then raise (Failure ("size cannot be less than or equal to 0"))
else ()
| color(r,g,b) ->
if r>255 || g>255 || b>255 || r<@ || g<®@ || b< @ then raise (Failure
("invalid RGB values for #color"))
else ()
in
List.iter flag_check flags;
(**** Checking globals ****)

let check_gbl 1 g = match g with
PrimDecl(_,n) ->n :: 1

51

(* Major issue of getting the correct type of attribute back *)
| objbecl(_,n) -> raise (Failure ("Cannot declare global object " ~ n))
in

let prims = List.fold_left check_gbl [] globals in

(* check for duplicate globals *)
report_duplicate (fun n -> "duplicate global variable " ~ n) prims;

(* Checks for duplicate special blocks *)
report_duplicate (fun n -> "duplicate blocks " ~ n) (List.map (fun block -> block.bname)
special blocks);

(¥*** Classes **¥¥*)
let class_decls =
let class_decl m c =
let name = c.cname in
(* make map of attr name -> type *)
let add_attr_typ map attr =
StringMap.add attr.aname attr.atyp map
in
let map_attr_typ = List.fold_left add_attr_typ StringMap.empty c.attributes in

StringMap.add name map_attr_typ m
in
(* create list of classes and their attrs mapped to attr names *)
List.fold_left class_decl StringMap.empty classes
in

(* check that class decls are valid *)
(* let check_obj_decl n =
if StringMap.mem n class_decls then ()
else raise (Failure ("class undefined"))
in *)

(*** Check for necessary code blocks ***)

(* add built-in functions *)
let built_in_decls = StringMap.add "tile"
{ btyp = Void; bname = "tile"; formals = [PrimDecl(Int, "x"); PrimDecl(Int, "y")I;
locals = []; body = [] }
(StringMap.singleton "background"
{ btyp = Void; bname = "background"; formals = [PrimDecl(String, "s")];
locals = []; body = [] })
in

let built_in_decls = StringMap.add "capture"
{ btyp = Void; bname = "capture"; formals = [];
locals = []; body = [] } built_in_decls
in

52

let built_in_decls = StringMap.add "setSprite"
{ btyp = Void; bname = "setSprite"; formals = [ObjDecl("type", "var"); PrimDecl(Int,
"X")];
locals = []; body = [] } built_in_decls
in

let built_in_decls = StringMap.add "isNull"
{ btyp = Int; bname = "isNull"; formals = [ObjDecl("type", "var")];
locals = []; body = [] } built_in_decls
in

let built_in_decls = StringMap.add "iprint"
{ btyp = Void; bname = "iprint"; formals = [PrimDecl(Int, "x")I;
locals = []; body = [] } built_in_decls
in

let built_in_decls = StringMap.add "fprint"
{ btyp = Void; bname = "fprint"; formals = [PrimDecl(Float, "x")];
locals = []; body = [] } built_in_decls
in

let built_in_decls = StringMap.add "sprint"
{ btyp = Void; bname = "sprint"; formals = [PrimDecl(String, "x")I;
locals = []; body = [] } built_in_decls
in

let built_in_decls = StringMap.add "close"
{ btyp = Void; bname = "close"; formals = [];
locals = []; body = []} built_in_decls
in

(* Create map of all functions - prevent duplicate function names *)

let function_decls = List.fold_left (fun m fd -> StringMap.add fd.bname fd m)
built_in_decls special blocks

in

(* Find function or block given its function name *)
let function_decl s = try StringMap.find s function_decls

with Not_found -> raise (Failure ("unrecognized function or block " ~ s))
in

let check_function func =

(* Type of each variable (global, formal, or local *)
let (symbols,objects) =
let add_to_lists (s,0) x = match x with
PrimDecl(t,n) -> (StringMap.add n (get_type x) s, o)
| objDecl(c,n) -> (StringMap.add n (get_type x) s, StringMap.add n c o)
in

List.fold_left add_to_lists

(StringMap.empty, StringMap.empty) (globals @ func.formals @ func.locals)

in

(* Get class of object *)
let class_of_obj s = try StringMap.find s objects with

Not_found -> raise (Failure ("Object declaration of undefined class"))
in

let type_of_identifier s =

try StringMap.find s symbols

with Not_found -> raise (Failure ("undeclared identifier" ~ s))
in

(* Return the type of an expression or throw an exception *)
let rec expr = function

Literal _ -> Int

| BoolLit _ -> Bool

| FloatLit _ -> Float

| stringLit _ -> String

| Id s -> type_of_identifier s

| Noexpr -> Void

| CoordLit (x, y) -> let t1l = expr x and t2 = expr y in

if t1 = Int & t2 = Int then Coord

else raise (Failure ("expected integers for type coord"))
| CoordAccess (_, a) ->

if a="x" || a="y" then Int

else Coord

| Binop(el, op, e2) as e -> let tl = expr el and t2 = expr e2 in
(match op with
Add | Sub | Mult | Div when t1

| Int && t2 = Int -> Int
Add | Sub | Mult | Div when t1
|

| Int & t2 = Float -> Float
| Div when t1 = Float && t2 = Int -> Float
| Add | Sub | Mult | Div when t1 = Float & t2 = Float -> Float
| Equal | Neq when t1 = t2 -> Bool

| Less | Leq | Greater | Geq when t1 = Int & t2 = Int -> Bool
| Less eq | Greater | Geq when tl1 = Int & t2 = Float -> Bool
|

|

|

|

Add | Sub | Mult

—

|
I
Less | Leq | Greater | Geq when tl1 = Float & t2 = Int -> Bool
Less | Leq | Greater | Geq when tl1 = Float &% t2 = Float -> Bool
And | Or when t1 = Bool & t2 = Bool -> Bool
-> raise (Failure ("illegal binary operator " ~
string_of_typ t1 ~ " " ~ string of op op ~ " " ~
string of_typ t2 ~ " in " ~ string_of_expr e)))

| Unop(op, e) as ex -> let t = expr e in
(match op with
Neg when t = Int -> Int
| Neg when t = Float -> Float

53

54

| Not when t = Bool -> Bool
| _ -> raise (Failure ("illegal unary operator " ~ string_of uop op *
string of_typ t ~ " in " ~ string_of_expr ex)))

| call(fname, actuals) as call ->
if fname = "isNull" then Int
else
if fname = "capture" then Coord
else let fd = function_decl fname in fd.btyp

| Assign(le, re) as ex ->
(match re with
| Instant(c, attrs) ->
(match le with
| Id (s) ->
let obj_class = class_of_obj s in
if obj_class = ¢ then Void
else raise (Failure ("class mismatch: assignment " ”~ obj_class ~ " to " ~ ¢))
| _ -> raise (Failure ("must instantiate a variable of class " * c))
)
| _ ->
let t2 = expr re in
let t1 =
(match le with
| Id (s) -> type_of_identifier s
| Access (s1, s2) ->
if StringMap.mem sl symbols then
let obj_class = class_of_obj sl in
let attr_decls = StringMap.find obj_class class_decls in
if StringMap.mem s2 attr_decls then Void
else raise (Failure ("attribute does not exist"))
else raise (Failure ("object was not declared"))
| GridAccess (_,_) -> Void

| _ -> expr le
) in
if t2 == t1 then t2
else raise (Failure ("Illegal assignment " ~ string_of typ t1 ~ " =" ~
string_of_typ t2 ~ " in " ~ string_of_expr ex))

)

(* | Assign(le, re) as ex -> let tl = expr le and t2 = expr re in
if t1 == t2 then t1 else raise (Failure ("illegal assignment " ~ string of_typ t1 *
" =" A string_ of_typ t2 ~ " in " ~ string_of_expr ex)) *)

| Gridcall(s) -> Int
| GridAccess (_,_) -> Void
| Access (s, a) ->
if StringMap.mem s symbols then
let obj_class = class_of _obj s in
let attr_decls = StringMap.find obj_class class_decls in

55

if StringMap.mem a attr_decls then StringMap.find a attr_decls
else raise (Failure ("attribute does not exist"))
else raise (Failure ("object was not declared"))

| Instant (_,_) -> Void
| Null -> Void
in

let check_bool_expr e = if expr e != Bool
then raise (Failure ("expected Boolean expression in " ~ string_of_expr e))
else () in

(* Verify a statement or throw an exception *)
let rec stmt = function
Block sl -> let rec check_block = function
[Return _ as s] -> stmt s
| Block sl :: ss -> check_block (sl @ ss)
| s :: ss -> stmt s ; check_block ss
| [1->0
in check_block sl
| Expr e -> ignore (expr e)
| Return e -> let t = expr e in if t = func.btyp then () else
raise (Failure ("return gives " ~ string of _typ t ~ " expected " *
string_of_typ func.btyp ~ " in " ~ string_of_expr e))

| If(p, bl, b2) -> check_bool expr p; stmt bl; stmt b2
| For(el, e2, e3, st) -> ignore (expr el); check_bool_expr e2;
ignore (expr e3); stmt st
| while(p, s) -> check_bool_expr p; stmt s
| Dowhile(s, p) -> check_bool_expr p; stmt s
in

stmt (Block func.body)

in
List.iter check_function special_blocks

10.1.5 codegen.ml

module L = Llvm
module A = Ast

module StringMap = Map.Make(String)

let translate (wflags, globals, classes, blocks) =
let context = L.global_context () in
let the_module = L.create_module context "Tiler
and i32_t = L.i32_type context

and i8 t = L.i8 type context
and i1 t = L.il_type context
and flt_t = L.double_type context
and void_t = L.void_type context in
let str_t = L.pointer_type i8_t in
let obj_t = L.pointer_type i8_t in

let coord_t = L.named_struct_type context "coord_t" in
L.struct_set_body coord_t [| i32_t; i32_t |] false;

let 1ltype_of_typ = function
A.Void -> void_t
| A.Int -> i32 t
| A.Bool -> i1 t
| A.Float -> flt_t
| A.String -> str_t
| A.Coord -> coord_t
in

let get_init = function
A.Int -> L.const_int i32_t ©
.Bool -> L.const_int il_t @
.Float -> L.const_float flt_t 0.0
.String -> L.const_pointer_null str_t
.Coord -> L.const_named_struct coord_t [|L.const_int i32_t ©; L.const_int i32_t 0|]
-> L.const_int i32_t o

A
A
A
A

in

(* Declare grid(), which the grid built-in function will call *)
let createGrid_t = L.function_type void_t [| i32_t; i32_t |[] in
let createGrid_func = L.declare_function "createGrid" createGrid_t the_module in

let setTitle_t = L.function_type void_t [| str_t |] in
let setTitle_func = L.declare_function "setTitle" setTitle_t the_module in

let setBackground_t = L.function_type void t [| str_t |] in
let setBackground_func = L.declare_function "setBackground" setBackground_t the_module in

let setBackgroundColor_ t = L.function_type void t [| i32_t; i32_t; i32_t |] in
let setBackgroundColor_func = L.declare_function "setBackgroundColor" setBackgroundColor_t
the_module in

let setWindow_t = L.function_type void t [| i32_t; i32_t |] in
let setWindow_func = L.declare_function "setWindow" setWindow_t the_module in

let createGame_t = L.function_type void_t [| |] in
let createGame_func = L.declare_function "createGame" createGame_t the_module in

(* Game functions *)
let init_type = L.function_type void t [| |] in

let setInit_t = L.function_type void_t [| L.pointer_type init_type |] in
let setInit_func = L.declare_function "setInit" setInit_t the_module in

let turn_type = L.function_type void_t [| |] in
let setTurn_t = L.function_type void_t [| L.pointer_type turn_type |] in
let setTurn_func = L.declare_function "setTurn" setTurn_t the_module in

let end_type = L.function_type i32_t [| |] in
let setEnd_t = L.function_type void_t [| L.pointer_type end_type |] in
let setEnd_func = L.declare_function "setEnd" setEnd_t the_module in

let runGame_t = L.function_type void_t [| |] in
let runGame_func = L.declare_function "runGame" runGame_t the_module in

(* Method for force closing windows, used mostly for testing purposes *)
let closeGame_t = L.function_type void_t [| |] in
let closeGame_func = L.declare_function "closeGame" closeGame_t the_module in

(* Grid functions *)
let gridWidth_t = L.function_type i32_t [| |] in
let gridwWidth_func = L.declare_function "gridWidth" gridWidth_t the_module in

let gridHeight_t = L.function_type i32_t [| |] in
let gridHeight_func = L.declare_function "gridHeight" gridHeight_t the_module in

let setGrid_t = L.function_type void_t [| obj_t; i32_t; i32_t|] in
let setGrid_func = L.declare_function "setGrid" setGrid_t the_module in

let getGrid_t = L.function_type obj t [| i32_t; i32_t|] in
let getGrid_func = L.declare_function "getGrid" getGrid_t the_module in

(* Object functions *)
let createObject_t = L.function_type obj_t [| obj_t |] in
let createObject_func = L.declare_function "createObject" createObject_t the_module in

let setSprite_t = L.function_type void_t [| obj_t; str_t|] in
let setSprite_func = L.declare_function "setSprite" setSprite_t the_module in

let getAttr_t = L.function_type obj t [| obj_t |] in
let getAttr_func = L.declare_function "getAttr" getAttr_t the_module in

let getX_t = L.function_type i32_t [||] in
let getX func = L.declare_function "getX" getX_t the_module in

let getY_ t = L.function_type i32_t [||] in
let getY_func = L.declare_function "getY" getY_t the_module in

let isNull_t = L.function_type i32_t [| obj_t |] in
let isNull func = L.declare_function "isNull" isNull_t the_module in

in

58

let getNullObject_t = L.function_type obj_t [||] in
let getNullObject_func = L.declare_function "createNullObject" getNullObject_t the_module in

(* Mouse function *)
let getMouseCoords_t = L.function_type void_t [| obj_t |] in
let getMouseCoords_func = L.declare_function "getMouseCoords" getMouseCoords_t the_module in

(* Declare printf(), which the print built-in function will call *)
let printf_t = L.var_arg_function_type i32_t [| str_t |] in
let printf_func = L.declare_function "printf" printf_t the_module in

(* Ensures int *)
let ensurelnt c =
if L.type_of c = flt_t then (L.const_fptosi c i32_t) else c in

(* Ensures float *)
let ensureFloat c =
if L.type_of ¢ = flt_t then c else (L.const_sitofp c flt_t) in

(* All global variables; remember its value in a map *)
let global vars =
let global_var m decl =
match decl with
A.PrimDecl(t, n) ->
let init = get_init t in
StringMap.add n (L.define_global n init the_module) m
| _ -> raise (Failure("can't define global objects"))
in
List.fold_left global_var StringMap.empty globals
in

(* make a class struct pointer *)
let class_attr_decls =
let class_decl m c

let name = c.A.cname in
let add_attr_types m attr =

Array.append m [| ltype of_typ attr.A.atyp |]
in

(* make array of just attr types *)
let attr_types = List.fold_left add_attr_types [||] c.A.attributes in

(* make map of attr name -> index *)
let add_attr_idx (map, idx) attr =
(* get index of attr in list attr_types *)
(StringMap.add attr.A.aname idx map, idx + 1)
in
let map_attr_idx = fst (List.fold_left add_attr_idx (StringMap.empty, @) c.A.attributes)

(* make struct for class and associate list of (attr name, typ) with class *)
let class_struct = L.named_struct_type context name in

L.struct_set_body class_struct attr_types false;
StringMap.add name (class_struct, map_attr_idx) m
in
(* create list of structs for all classes *)
List.fold_left class_decl StringMap.empty classes
in

let block_decls =
let block_decl m block =
let name = block.A.bname in
let map_types ta formal =
match formal with
A.PrimDecl(t, _) ->
Array.append ta [| (1ltype_of_typ t) |]
| _ -> raise (Failure("invalid function formal"))
in
let formal_types = List.fold_left map_types [||] block.A.formals in
let btype = L.function_type (1ltype_of_typ block.A.btyp) formal_types in
StringMap.add name (L.define_function name btype the_module, block) m in
List.fold_left block_decl StringMap.empty blocks
in

(* declares the function to set window flags *)
let flag_func_ptr =
let typ = L.function_type void_t [| |] in
L.define_function "flags" typ the_module in

(* builds the function to set window flags *)
let flag_function_builder flags =

let builder = L.builder_at_end context (L.entry_block flag func_ptr) in
let flag_build wflag = (match wflag with
A.Title(str) ->

let title = L.build_global_stringptr str "title" builder in
ignore(L.build_call setTitle_func [| title |] "" builder)

| A.Size(w,h) ->
let width = L.const_int i32_t w
and height = L.const_int i32_t h in
ignore(L.build _call setWindow_func [| width; height |] "" builder)

| A.Color(r,g,b) ->
let red = L.const_int i32_t r
and green = L.const_int i32_t g
and blue = L.const_int i32_t b in

ignore(L.build_call setBackgroundColor_func [| red; green; blue |] "" builder)

) in

List.iter flag build flags;

60

ignore(L.build_ret_void builder)
in

let build_block_body block =
let (the_block, _) = StringMap.find block.A.bname block_decls in
let builder = L.builder_at_end context (L.entry_block the_block) in

(* Construct the function's "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map *)

let local_vars =

let add_formal m formal p =
match formal with
A.PrimDecl(t, n) ->
L.set_value_name n p;
let local = L.build_alloca (ltype_of_typ t) n builder in
ignore (L.build_store p local builder);
StringMap.add n local m
| A.objbecl(_,) -> raise (Failure("invalid function formal"))
in
let formals = List.fold_left2 add_formal StringMap.empty block.A.formals (Array.to_list
(L.params the_block)) in

let add_local (ml, m2) decl =
match decl with
A.PrimDecl(t, n) ->

let local _var = L.build_alloca (ltype of_typ t) n builder in
(StringMap.add n local_var ml, m2)

| A.ObjDecl(c, id) ->
let (cstruct, _) = StringMap.find c class_attr_decls in
let cstruct_ptr = L.build_malloc cstruct (c ~ "_class_struct_ptr") builder in
let cstruct_ptr = L.build_pointercast cstruct_ptr obj_t (c ~ "_ptrcast") builder

in

let obj_ptr = L.build_call createObject_func [| cstruct_ptr |] "" builder in

let obj_ptr_ptr = L.build_alloca obj_t id builder in
ignore(L.build_store obj_ptr obj_ptr_ptr builder);
(m1, StringMap.add id (c, obj_ptr_ptr) m2)
in
List.fold_left add_local (formals, StringMap.empty) block.A.locals
in

(* Return the value for a variable or formal argument *)

let lookup_var n = try StringMap.find n (fst local_vars) with
| Not_found -> try snd (StringMap.find n (snd local_vars)) with
| Not_found -> try StringMap.find n global_vars with
| Not_found -> raise (Failure("unknown variable name " ~ n))

in

let lookup_obj n = try StringMap.find n (snd local_vars) with

| Not_found -> raise (Failure("unknown object name " ~ n))
in

(* Construct code for an expression; return its value *)
let rec expr builder = function
A.Literal i -> L.const_int i32_t i
| A.BoolLit b -> L.const_int il _t (if b then 1 else 0)
| A.FloatLit f -> L.const_float flt t f
| A.StringlLit s -> L.build_global_stringptr s "name" builder
| A.Noexpr -> L.const_int i32_t @
| A.CoordLit (el, e2) ->
let el' = ensureInt (expr builder el)
and e2' ensureInt (expr builder e2) in
let coord_ptr = L.build_alloca coord_t "tmp" builder in
let x_ptr = L.build_struct_gep coord_ptr @ "x" builder in
ignore (L.build_store el' x_ptr builder);
let y_ptr = L.build_struct_gep coord_ptr 1 "y" builder in
ignore (L.build_store e2' y ptr builder);
L.build _load coord_ptr "v" builder

| A.CoordAccess (s1, s2) ->
let coord_ptr = (lookup_var s1) in
let idx =
(match s2 with
"x" -> 0
| "y" ->1
| _ -> raise (Failure("choose x or y to access coordinate"))
)
in
let value_ptr = L.build_struct_gep coord_ptr idx (s2 ~ "_ptr") builder in
L.build_load value_ptr s2 builder

| A.GridAccess (el, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
L.build_call getGrid_func [| el'; e2' |] "accessed_obj" builder

| A.Binop (el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
if (L.type_of el' = flt_t || L.type_of e2' = flt_t) then
(match op with

A.Add -> L.build_fadd
| A.Sub -> L.build_fsub
| A.Mult -> L.build_fmul
| A.Div -> L.build_fdiv
| A.Mod -> L.build_frem
| A.Equal -> L.build_fcmp L.Fcmp.Oeq
| A.Neq -> L.build_fcmp L.Fcmp.One
| A.Less -> L.build_fcmp L.Fcmp.Olt

61

A.Leq -> L.build_fcmp L.Fcmp.Ole

A.Greater -> L.build_fcmp L.Fcmp.Ogt

A.Geq -> L.build_fcmp L.Fcmp.Oge

_ -> raise (Failure("invalid operands for floating point arguments"))
) (ensureFloat el') (ensureFloat e2') "tmp" builder

else
(match op with
A.Add -> L.build_add
| A.sub -> L.build_sub
| A.Mult -> L.build_mul
| A.Div -> L.build_sdiv
| A.Mod -> L.build_srem
| A.And -> L.build_and
| A.or -> L.build_or
| A.Equal -> L.build_icmp L.Icmp.Eq
| A.Neq -> L.build_icmp L.Icmp.Ne
| A.Less -> L.build_icmp L.Icmp.S1t
| A.Leq -> L.build_icmp L.Icmp.Sle
| A.Greater -> L.build icmp L.Icmp.Sgt
| A.Geq -> L.build_icmp L.Icmp.Sge
) el" e2' "tmp" builder
| A.Unop(op, e) ->
let e' = expr builder e in
(match op with
A.Neg -> L.build_neg
| A.Not -> L.build_not) e' "tmp" builder

| A.Assign (le, re) ->
(match re with
| A.Instant(c, attrs) ->
(match le with
| A.Id (s) ->
let obj_ptr_ptr = lookup_var s in
let obj_ptr = L.build_load obj_ptr_ptr "obj" builder in
let cstruct_ptr = L.build_call getAttr_func [| obj_ptr |] "" builder in
let (cstruct, _) = StringMap.find c class_attr_decls in
let new_ptr = L.build_pointercast cstruct_ptr (L.pointer_type cstruct) (c *
"_ptrcast") builder in
ignore(List.fold_left (fun idx a ->
let attr_ptr = L.build_struct_gep new_ptr idx (c ~ (string_of_int idx) »
_attr_ptr") builder in
ignore (L.build_store (expr builder a) attr_ptr builder);
idx + 1
) @ attrs);
obj_ptr

| _ -> raise (Failure ("Must instantiate a variable"))

| _ -> let e' = expr builder re in

63

(match le with
| A.Id (s) -> L.build_store e' (lookup_var s) builder
| A.Access (s1, s2) ->
let (cname, obj_ptr_ptr) = lookup_obj s1 in
let obj_ptr = L.build_load obj_ptr_ptr "obj" builder in
let cstruct_ptr = L.build_call getAttr_func [| obj_ptr |] "" builder in
let (cstruct, attr_idx) = StringMap.find cname class_attr_decls in
let new_ptr = L.build_pointercast cstruct_ptr (L.pointer_type cstruct) (s1 *
" ptr") builder in
let idx = StringMap.find s2 attr_idx in
let attr_ptr = L.build_struct_gep new_ptr idx (s1 ~ " " ~ s2 ~ " attr_ptr")
builder in
L.build_store e' attr_ptr builder;
| A.GridAccess (el, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
ignore(L.build_call setGrid_func [| e'; el'; e2' |] "" builder); e’
| _ -> L.const_int i32_t @

| A.Id s -> L.build_load (lookup_var s) s builder

| A.Call ("tile", [el; e2]) ->
L.build_call createGrid_func [| (expr builder el); (expr builder e2) |] "" builder

| A.call ("background", [e]) ->
L.build_call setBackground_func [| (expr builder e) |] "" builder

| A.call ("setSprite", [el; e2]) ->
L.build_call setSprite_func [| (expr builder el); (expr builder e2) |] "" builder

| A.Call ("capture", []) ->
let coord_ptr = L.build_alloca coord_t "tmp" builder in
let void_ptr = L.build_pointercast coord_ptr (L.pointer_type i8 t) "tmp2" builder in

let coord_ptr2 =
ignore(L.build_call getMouseCoords_func [| void_ptr |] "" builder);
L.build_pointercast void_ptr (L.pointer_type coord_t) "c" builder
in
L.build_load coord_ptr2 "v" builder

| A.Ccall ("isNull", [e]) ->
L.build call isNull func [| (expr builder e) |] "" builder

(* Set of print functions that prints to stdout *)
| A.call ("iprint", [e]) ->
let int_format_str = L.build_global_stringptr "%d\n" "fmt" builder in
L.build_call printf_func [| int_format_str ; (expr builder e) |] "printf" builder
| A.call ("fprint", [e]) ->

64

let flt_format_str = L.build_global_stringptr "%f\n" "fmt" builder in

L.build _call printf_func [| flt_format_str ; (expr builder e) |] "printf" builder
| A.call ("sprint", [e]) ->

let str_format_str = L.build_global_stringptr "%s\n" "fmt" builder in

L.build_call printf_func [| str_format_str ; (expr builder e) |] "printf" builder

| A.call ("close", []) ->
L.build_call closeGame_func [| |] "" builder

(* Non-defined functions are defined by this case *)
| A.call (f, act) ->
let (fdef, block) = StringMap.find f block_decls in
let actuals = List.rev (List.map (expr builder) (List.rev act)) in
let result = (match block.A.btyp with A.Void -> "" | _ -> f ~ "_result") in
L.build_call fdef (Array.of_list actuals) result builder

| A.GridCall (s) ->
if s = "w" then
L.build_call gridwidth_func [||] "gridw" builder

else L.build_call gridHeight_func [||] "gridh" builder

| A.Access (c, a) ->
let (cname, obj_ptr_ptr) = lookup_obj c in
let obj_ptr = L.build_load obj_ptr_ptr "obj" builder in
let cstruct_ptr = L.build_call getAttr_func [| obj_ptr |] "" builder in
let (cstruct, attr_idx) = StringMap.find cname class_attr_decls in
let new_ptr = L.build_pointercast cstruct_ptr (L.pointer_type cstruct) (c *

" ptrcast") builder in

in

(match a with
| "x" -> L.build_call getX_func [||] "" builder
| "y" -> L.build_call getY_func [||] "" builder
| _ >
let idx = StringMap.find a attr_idx in
let attr_ptr = L.build_struct_gep new_ptr idx (¢ ~ "_" ~ a ~ " _attr_ptr") builder

L.build_load attr_ptr ("load " ~ a ~ "_attr") builder
)
| A.Instant (_,_) -> raise (Failure ("Instantation needs an assignment"))
(* this is essentially meaningless in this context w/o LHS *)
| A.Null -> L.build_call getNullObject func [||] "" builder
in

(* Invoke "f builder" if the current block doesn't already
have a terminal (e.g., a branch). *)
let add_terminal builder f =
match L.block_terminator (L.insertion_block builder) with
Some _ -> ()
| None -> ignore (f builder) in

(* Build the code for the given statement; return the builder for
the statement's successor *)
let rec stmt builder = function
A.Block sl -> List.fold_left stmt builder sl
| A.Expr e -> ignore (expr builder e); builder
| A.Return e -> ignore (match block.A.btyp with
A.Void -> L.build_ret_void builder
| _ -> L.build_ret (expr builder e) builder); builder
| A.If (predicate, then_stmt, else_stmt) ->
let bool_val = expr builder predicate in
let merge_bb = L.append_block context "merge" the_block in
let then_bb = L.append_block context "then" the_block in
add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)
(L.build_br merge_bb);

let else_bb = L.append_block context "else" the_block in
add_terminal (stmt (L.builder_at_end context else_bb) else_stmt)
(L.build_br merge_bb);

ignore (L.build_cond_br bool_val then_bb else_bb builder);
L.builder_at_end context merge_bb

| A.Wwhile (predicate, body) ->
let pred_bb = L.append_block context "while" the_block in
ignore (L.build_br pred_bb builder);

let body bb = L.append_block context "while body" the_block in
add_terminal (stmt (L.builder_at_end context body bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool_val = expr pred_builder predicate in

let merge_bb = L.append_block context "merge" the_block in
ignore (L.build_cond_br bool _val body bb merge_bb pred_builder);
L.builder_at_end context merge_bb

| A.DoWhile (body, predicate) -> stmt builder
(A.Block [A.Block [body] ; A.While(predicate, body)])

| A.For (el, e2, e3, body) -> stmt builder
(A.Block [A.Expr el ; A.While (e2, A.Block [body ; A.Expr e3])])
in

(* Build the code for each statement in the function *)
let builder = stmt builder (A.Block block.A.body) in

(* Add a return if the last block falls off the end *)
add_terminal builder (match block.A.btyp with
A.Void -> L.build_ret_void

65

66

| t -> L.build_ret (L.const_int (1ltype_of_typ t) @)
) in

List.iter build_block_body blocks;
flag_function_builder wflags;

let main_ftype = L.function_type i32_t [| |] in
let main_function = L.define_function "main" main_ftype the_module in
let main_builder = L.builder_at_end context (L.entry_block main_function) in
ignore (L.build_call createGame_func [||] "" main_builder);
ignore (L.build call flag func_ptr [| |] "" main_builder);
let (init_func_ptr, _) = StringMap.find "init" block_decls in
ignore (L.build_call setInit_func [| init_func_ptr |] "" main_builder);
if (StringMap.mem "turn" block_decls)
then let (turn_func_ptr, _) = StringMap.find "turn" block_decls in
ignore (L.build_call setTurn_func [| turn_func_ptr |] ""
else ();
if (StringMap.mem "end" block_decls)
then let (end_func_ptr, _) = StringMap.find "end" block_decls in
ignore (L.build_call setEnd_func [| end_func_ptr |] "" main_builder);
else ();
ignore (L.build_call runGame_func [| |] "" main_builder);
ignore (L.build_ret (L.const_int i32_t @) main_builder);

main_builder);

the_module

10.1.6 tiler.ml

(* Top-level of the Tiler compiler: scan & parse the input,
check the resulting AST, generate LLVM IR, and dump the module *)

open Printf
module StringMap = Map.Make(String)
type action = Ast | LLVM_IR | Compile

let _ =
let action =
if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [
("-a", Ast); (* Print the AST *)
("-1", LLVM_IR); (* Generate LLVM, don't check *)
("-c", Compile)] (* Generate, check LLVM IR *)
else Compile in
let (ic, oc,) =
let infile = Sys.argv.(2) in
let i = String.rindex infile
let executable = String.sub infile © i in

in

let outfile = executable ~ ".11" in
(open_in infile, open_out outfile, executable)
in
let lexbuf = Lexing.from_channel ic in
let ast = Parser.program Scanner.token lexbuf in
Semant.check ast;
match action with
Ast -> print_string (Ast.string_of_program ast)
| LLVM_IR -> print_string (Llvm.string_of llmodule (Codegen.translate ast))
| Compile -> let m = Codegen.translate ast in
Llvm_analysis.assert_valid_module m;
fprintf oc "%s" (Llvm.string_of_llmodule m);
close_out oc

10.2 Runtime Library

10.2.1 TileGame.h

#pragma once

// object

struct Object {
// tiler class type
int classCode;

// coordinates on grid
int x, y;
int isOnGrid;

// sprite
struct SDL_Surface *sprite;

// attributes
void *attr;

1

// grid

struct GameGrid {
// dimensions of grid
int width, height;

// display rectangles
struct SDL_Rect *disp_rects;

// objects on grid
struct Object **objs;
¥

67

// game

struct TileGame {
// window title
char *title;

// window dims
int width, height;

// background rgb
int bg_r, bg g, bg b;

// background surface
struct SDL_Surface *bg;

// is running
int running, exit;

1

// game info
struct TileGame *game;

// grid
struct GameGrid *grid;

// function pointers
struct Blocks {
// init block
void(*init_ptr)();

// turn block
void(*turn_ptr)();

// end block
int(*end_ptr)();
s

// function pointers
struct Blocks *blocks;

// object reference node
struct ObjNode {
struct Object *obj;
struct ObjNode *next;

1

// object reference list
struct ObjRefList {

struct ObjNode *head;
¥

68

struct ObjRefList obj_refs;

// coordinate on grid
struct Coord {
int x, y;

1

// mouse event info

struct MouseInfo {
struct Coord coords;
int pulled;

s

struct MouseInfo mouselnfo;

10.2.2 tiler-functs.c

#tinclude <stdbool.h>
#tinclude <stdlib.h>
#tinclude "tiler-functs.h"

extern struct Blocks *blocks;

void setInit(void(*init)()) {
blocks->init_ptr = init;

void setTurn(void(*turn)()) {
blocks->turn_ptr = turn;

void setEnd(int(*end)()) {
blocks->end_ptr = end;

10.2.3 tiler-grid.c

#include <stdio.h>
#include <stdlib.h>
#include "SDL.h"

#include "tiler-object.h"
#include "tiler-grid.h"

extern struct TileGame *game;
extern struct GameGrid *grid;

void createNullObjectOnGrid(int x, int y) {
// create space for object
struct Object *obj = (struct Object *) malloc(sizeof(struct Object));
if (lobj) {
fprintf(stderr, "malloc returned NULL");

return;

// set to be null
obj->classCode = 0;

// set sprite to NULL
obj->sprite = NULL;

// set the attribute pointer to NULL
obj->attr = NULL;

// init to be on grid
obj->x = x;

obj->y =y;
obj->isOnGrid = 1;

// place on the grid
int i = x + y * grid->width;
grid->objs[i] = obj;

void createGrid(int width, int height) {
// allocate space for grid struct
grid = (struct GameGrid *) malloc(sizeof(struct GameGrid));

if (lgrid) {
fprintf(stderr, "malloc returned NULL");
return;

}

// initialize width and height
grid->width = width;
grid->height = height;

// allocate space for object ptrs in grid
int n = width * height;
grid->objs = (struct Object **) malloc(n * sizeof(struct Object *));
if (!grid->objs) {
fprintf(stderr, "malloc returned NULL");
return;

// initialize obj ptrs to NULL objects
for (int i = @; i < width; i++) {
for (int j = @; j < height; j++) {
createNullObjectOnGrid(i, j);

// add display rectangles

70

grid->disp_rects = (struct

int w, h;

w = game->width / width;
h = game->height / height;

struct SDL_Rect *cur;

SDL_Rect *) malloc(n * sizeof(struct SDL_Rect));

for (int 1 = @; i < width; i++) {
for (int j = @; j < height; j++) {
cur = &(grid->disp_rects[i + j*width]);

cur->x
cur->y
cur->w
cur->h

int gridwidth() {
return grid->width;

int gridHeight() {
return grid->height;

i*w;
3*h;
W;
h;

struct Object *removeGrid(int x, int y) {

// get the object

int i = x + y*grid->width;
struct Object *obj = grid->objs[i];

// remove from grid
grid->objs[i] = NULL;

if (obj->classCode) {

// add back to list
obj->isOnGrid = 0;

addObject(obj);

}

else {
// clean NULL object
freeObject(obj);

}

return obj;

void setGrid(void *object, int x, int y) {
struct Object *obj = (struct Object *) object;

// get the object to place

71

struct Object *target;

if (obj->isOnGrid) {target =
else {target = removeObject(o
if (!target) {

removeGrid(obj->x, obj->y);}
bj);}

fprintf(stderr, "Untracked Object!");

return;

// replace

removeGrid(x, y);

int i = x + y*grid->width;
grid->objs[i] = target;

// change members
target->isOnGrid = 1;
target->x = x;
target->y = y;

void clearGrid(int x, int y) {
// take off
removeGrid(x, y);

// replace with NULL object
createNullObjectOnGrid(x, y);

void cleanGrid() {
int n = grid->width*grid->hei
for (int 1 = 0; i < n; i++) {

ght;

freeObject(grid->objs[i]);

void *getGrid(int x, int y) {
int i = x + y*grid->width;
return (void *) grid->objs[i]

int isEmpty(int x, int y) {
struct Object *obj = (struct
return !obj->classCode;

void destroyGameGrid() {
cleanGrid();
free(grid->objs);
free(grid->disp_rects);
free(grid);

B

Object *) getGrid(x, y);

72

10.2.4 tiler-main.c

#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include "SDL.h"

#include "tiler-object.h"
#include "tiler-grid.h"
#include "tiler-mouse.h"
#include "tiler-main.h"

#include <stdlib.h>
//#include <crtdbg.h>

// global values

extern struct TileGame *game;
extern struct GameGrid *grid;
extern struct Blocks *blocks;
extern struct ObjRefList obj_refs;
extern struct MouseInfo mouseInfo;

void createGame() {
game = (struct TileGame *)malloc(sizeof(struct TileGame));

if (!game) {
fprintf(stderr, "malloc returned NULL");
exit(0);

}

// init title

char *def = "Game";

size_t n = strlen(def) + 1;

game->title = (char *)malloc(n);

if (!game->title) {
free(game);
fprintf(stderr, "malloc returned NULL");
exit(0);

}

memcpy (game->title, def, n);

// init window size
setWindow(640, 480);

// init bg color
setBackgroundColor (255, 255, 255); // white

// set background to NULL
game->bg = NULL;

// set running to false
game->running = 0;

game->exit = 0;

// create the function pointers
blocks = (struct Blocks *) malloc(sizeof(struct Blocks));
if (!blocks) {
SDL_FreeSurface(game->bg);
free(game->title);
free(game);
fprintf(stderr, "malloc returned NULL");
exit(9);
}
blocks->init_ptr = NULL;
blocks->turn_ptr = NULL;
blocks->end_ptr = NULL;

// initialize empty object reference list
obj_refs.head = NULL;

// initialize mouse info
mouseInfo.pulled = 0;

void setTitle(const char *str) {
// free old title
if (game->title) {
free(game->title);

// allocate memory for new title

size_t n = strlen(str) + 1;

game->title = (char *)malloc(n);

if (!game->title) {
fprintf(stderr, "malloc returned NULL");
return;

// copy string
memcpy (game->title, str, n);

void setWindow(int width, int height) {
game->width = width;
game->height = height;

void setBackgroundColor(int red, int green, int blue) {
game->bg r = red;

74

game->bg g = green;
game->bg b = blue;

void setBackground(char *filepath) {
game->bg = SDL_LoadBMP(filepath);
if (!game->bg) {
fprintf(stderr, "SDL_LoadBMP Error: %s\n", SDL_GetError());
return;

void draw(SDL_Renderer *renderer) {
// load background texture
SDL_Texture *back_tex = NULL;
if (game->bg) {
back_tex = SDL_CreateTextureFromSurface(renderer, game->bg);
if (!back_tex) {
fprintf(stderr, "Background Texture Error: %s\n", SDL_GetError());

// load object textures
int n = grid->width*grid->height;
SDL_Texture **obj_tex = (SDL_Texture **) malloc(n*sizeof(SDL_Texture *));
for (int i =0; i < n; i++) {
obj_tex[i] = NULL;
if (grid->objs[i]->sprite) {
obj_tex[i] = SDL_CreateTextureFromSurface(renderer,
grid->objs[i]->sprite);
//printf("Loaded Object Sprite");

// clear back buffer
SDL_RenderClear(renderer);

// draw to background img to buffer
if (back_tex) { SDL_RenderCopy(renderer, back_tex, NULL, NULL); }

// draw object imgs to buffer
for (int i =0; i < n; i++) {
if (grid->objs[i] && obj_tex[i]) {
SDL_RenderCopy(renderer, obj_tex[i], NULL, &(grid->disp_rects[i]));

// draw buffer to screen
SDL_RenderPresent(renderer);

// free draw resources
if (back_tex) { SDL_DestroyTexture(back_tex); }
for (int i =0; i < n; i++) {
if (obj_tex[i]) {SDL_DestroyTexture(obj_tex[i]);}
}
free(obj_tex);

jmp_buf funcBuf;

void exitFunction() {
longjmp(funcBuf, 1);

static int gamelLoop(void *vargp) {
//_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG);

SDL_Renderer *renderer = (SDL_Renderer *)vargp;

// set background color
SDL_SetRenderDrawColor(renderer, game->bg r, game->bg g, game->bg b, 255);

// run init
if (!setjmp(funcBuf)) {
blocks->init_ptr();

// game loop

while (game->running && !game->exit) {
// draw
draw(renderer);

// check if end condition already met
if (blocks->end_ptr) {
if (!setjmp(funcBuf)) {
game->exit = blocks->end_ptr();

}
}
else {

game->exit = 0;
}

// perform turns
while (game->running && !game->exit) {
// call turn
if (blocks->turn_ptr) {
if (!setjmp(funcBuf)) {

76

blocks->turn_ptr();

}
cleanObjects();

// update draw
draw(renderer);

// test end
if (game->running && !game->exit) {
if (blocks->end_ptr) {
if (!setjmp(funcBuf)) {
game->exit = blocks->end_ptr();

printf("Game over.\n");

//destroyGame();
//_CrtDumpMemoryLeaks();

return 9;

void runGame() {

// initialize SDL

if (SDL_Init(SDL_INIT_VIDEO)) {
fprintf(stderr, "SDL_Init Error: %s\n", SDL_GetError());
return;

// create window
SDL_Window *window = SDL_CreateWindow(game->title,
SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED,
game->width, game->height, SDL_WINDOW_SHOWN | SDL_WINDOW_MOUSE_FOCUS);
if (!window) {
fprintf(stderr, "SDL_CreateWindow Error: %s\n", SDL_GetError());
SDL_Quit();
return;

// create renderer
SDL_Renderer *renderer = SDL_CreateRenderer(window, -1,
SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC);
if (!renderer) {
SDL_DestroyWindow(window);

77

fprintf(stderr, "SDL_CreateRenderer Error: %s\n", SDL_GetError());
SDL_Quit();
return;

// call game logic thread

game->running = 1;

SDL_Thread *thread;

int trv;

thread = SDL_CreateThread(gameLoop, "game loop", (void *)renderer);

while (game->running) {
// event processing
SDL_Event event;
while (SDL_PollEvent(&event)) {
if (event.type == SDL_QUIT) {
game->running = 0;
}
else if (event.type == SDL_MOUSEBUTTONDOWN) {
// compute the coords on the grid
int x, y;
x = event.button.x/(game->width/grid->width);
y = event.button.y/(game->height/grid->height);
setMouseInfo(x, y);

// wait for game thread to complete
SDL_WaitThread(thread, &trv);

// release memory
destroyGame();
SDL_DestroyRenderer(renderer);
SDL_DestroyWindow(window);
SDL_Quit();

void closeGame() {
printf("%s\n", "The game window was successfully launched ...");
game->running = 0;
printf("%s\n", "The game window has been exited. Program exited.");

void destroyGame() {
// grid
if(grid) {
destroyGameGrid();

78

// blocks
free(blocks);

// game
SDL_FreeSurface(game->bg);
free(game->title);
free(game);

10.2.5 tiler-mouse.c

#tinclude "tiler-main.h"
#include "tiler-mouse.h"

extern struct MouseInfo mouseinfo;
extern struct TileGame *game;

void setMouseInfo(int x, int y) {
mouseInfo.coords.x = X;
mouseInfo.coords.y = y;
mouseInfo.pulled = 0;

void pullMouseInfo(struct Coord *tuple ptr) {
tuple_ptr->x = mouseInfo.coords.x;
tuple_ptr->y = mouseInfo.coords.y;
mouseInfo.pulled = 1;

void getMouseCoords(void *tuple_ptr) {
mouseInfo.pulled = 1;
while (mouseInfo.pulled) {
if (!game->running) {
exitFunction();

pullMouseInfo((struct Coord *) tuple ptr);

10.2.6 tiler-object.c

#include <stdio.h>
#include "SDL.h"
#include "tiler-object.h"

// global variables
extern struct ObjRefList obj_refs;

79

void addObject(struct Object *obj) {
// allocate space for new node
struct ObjNode *node = (struct ObjNode *) malloc(sizeof(struct ObjNode));

if (!node) {
fprintf(stderr, "malloc returned NULL");
return;

}

// set node values
node->obj = obj;

node->next = obj_refs.head;
obj_refs.head = node;

int listIsEmpty() {
return obj_refs.head == NULL;

struct Object* removeHead() {
struct ObjNode *node = obj_refs.head;
obj_refs.head = obj_refs.head->next;
struct Object *obj = node->obj;
free(node);
return obj;

struct Object *removeObject(struct Object *obj) {
// check for empty list
if (listIseEmpty()) {
return NULL;

// if object is head of list
struct ObjNode *cur = obj_refs.head;
if (cur->obj == obj) {

return removeHead();

// object down list

struct ObjNode *last = cur;

cur = cur->next;

while (cur != NULL && cur->obj != obj) {
cur = cur->next;
last = last->next;

if (cur != NULL) {
struct Object *result = cur->obj;
last->next = cur->next;

free(cur);
return result;
}
else { // not found
return NULL;

void* createObject(void *attr) {
// create space for object
struct Object *obj = (struct Object *) malloc(sizeof(struct Object));
if (lobj) {
fprintf(stderr, "malloc returned NULL");
return NULL;

// set to be not null
obj->classCode = 1;

// set sprite to NULL
obj->sprite = NULL;

// init not on grid
obj->isOnGrid = 0;
addObject(obj);

// set the pointer to attribute struct
obj->attr = attr;

return (void *) obj;

void *createNullObject() {
// create space for object
struct Object *obj = (struct Object *) malloc(sizeof(struct Object));
if (lobj) {
fprintf(stderr, "malloc returned NULL");
return NULL;

// set to be null
obj->classCode = 0;

// set sprite to NULL
obj->sprite = NULL;

// init not on grid
obj->isOnGrid = 0;
addObject(obj);

// set the attribute pointer to NULL
obj->attr = NULL;

return (void *) obj;

void setSprite(void *object, char *sprite_filepath) {
struct Object *obj = (struct Object *) object;

// set the sprite

obj->sprite = SDL_LoadBMP(sprite_filepath);

if (lobj->sprite) {

fprintf(stderr, "SDL_LoadBMP Error: %s\n", SDL_GetError());

int getX(void *object) {
struct Object *obj = (struct Object
return obj->x;

int getY(void *object) {
struct Object *obj = (struct Object
return obj->y;

void *getAttr(void *object) {
struct Object *obj = (struct Object
return obj->attr;

int isNull(void *object) {
struct Object *obj = (struct Object
return !obj->classCode;

int getType(void *object) {
struct Object *obj = (struct Object
return obj->classCode;

void freeObject(struct Object *obj) {
if (obj-»>attr) { free(obj->attr); }
SDL_FreeSurface(obj->sprite);
free(obj);

void cleanObjects() {
while (obj_refs.head) {
freeObject(removeHead());

*)

*)

*)

*)

*)

object;

object;

object;

object;

object;

82

10.2.7 tiler.h

#pragma once

#include "tiler-main.h"
#include "tiler-functs.h"
#include "tiler-grid.h"
#include "tiler-object.h"
#include "tiler-mouse.h"

10.3 Tests

10.3.1 helloworld.tile
// single line comment
init {

tile(3, 3);
background("./sprites/hello.bmp");

10.3.2 helloworld2.tile

int x;
init {
int y;
int z;
bool c;
bool d;

tile(3, 3);
background("./sprites/hello.bmp");

X = 2;

y =X + 1;

iprint(y);

sprint("i love jacky");
c = true;

d = Ic;

iprint(d);

iprint(c);

// prints 111
if (d) {

83

iprint(000);
} else if (c) {
iprint(111);

// prints 1...10
for (x=0; x<11; x=x+1) {
iprint(x);

// does not print anything
y =1;
while (y < 1) {

iprint(y);

y=y+1;

// prints 10
z = 10;
do {
iprint(z);
z =2+ 1;
} while (z < 10);

turn {
int g;
g = 55;
iprint(g);

10.3.3 helloworld3.tile

#size 500 250
#ttitle "hello world 3"

int x; int y;
coord mouse;
float a; float b;

class Click {
attr: string cool;
attr: int booll;
attr: string bool2;

int add(int a, int b) {
int x;
X = 100;
return a+b+x;

84

}
init {
<Click> idk;
coord point;
tile(3, 3);
background("./sprites/hello.bmp");
X =1;
y = 2;
idk = new Click("yes", 1@, "21");
idk.bool2 = "idk";
sprint(idk.cool);
iprint(idk.booll);
sprint(idk.bool2);
/*
point = [0, 9];
x = point[x];
iprint(x);
iprint(point[y]);
*/
iprint(add(1, 2));
iprint(7%2);
a=3.7;
b =2.2;
fprint(a+b);
}
turn {
mouse = capture();
iprint(mouse[x]);
iprint(mouse[y]);
}

10.3.4 helloworld4.tile

// single line comment

#size 500 250
#color © @ 255
#title "best game in the whole world"

int num;
string glob;
coord mouse;

85

class GridObj {

init {

turn {

attr: bool ok;

<GridObj> objl;

<GridObj> obj2;

<GridObj> obj3;

string loc;

tile(3, 3);
background("./sprites/tictactoe_board

objl = new GridObj(true);
setSprite(objl, "./sprites/x.bmp");

obj2 = new GridObj(false);
obj2 = obji;
iprint(obj2.0k);

num = 5;

glob = "This is a global string!";
loc = "this is a local string!";
sprint(glob);

sprint(loc);

grid[1,1] = obji;

iprint(isNull(grid[1, 11));
obj2 = grid[1,1];
iprint(isNull(obj2));
iprint(isNull(obj1));

iprint(gridw);
iprint(gridh);

obj3 = new GridObj(false);
setSprite(obj3, "./sprites/o.bmp");
grid[2, 2] = obj3;

iprint(obj3.x);
iprint(obj3.y);

mouse = capture();
iprint(mouse[x]);
iprint(mouse[y]);
sprint(glob);

grid[1,1] = NULL;

-bmp™);

86

iprint(isNull(grid[1,1]));

10.3.5 Listing of All Test Cases

// Testing arithmetic operations
int x;

init {
bool b;
tile(3,3);
X = ======= 9;
iprint(x);

iprint(b);
close();

// Testing arithmetic operations

init{
int a;
int b;
int c;
tile(3,3);

a=1;

b = 2;

c = 3;
iprint(a+b/c);
iprint(b-c);
iprint(a*c);
iprint(c*c*c*c*c);
iprint(b%c);
close();

// This tests that assignment is generally working for int, float, string, bool

init {
// Type declarations
int a;
int b;

int c;

string i;
string j;

float m;
float n;

bool x;
bool y;

tile(3,3);

// Assignment of variables
=42 - 17;

=6 * 3;

= b + 64;

= 1.12341;

3.180;

= "It's a me Mario";

= "Oh hello, Luigi";

= true;

1(!Ix);

< X W B S5 3 N o
1}

iprint(a);
iprint(b);
iprint(c);

sprint(i);
sprint(j);

fprint(m);
fprint(n);

if (x) {sprint("true");} else {sprint("false");}
if (y) {sprint("true");} else {sprint("false");}

close();

// This tests that the do while loop works as expected

init {

int a;
int b;

tile(3,3);

88

a = 100;
b = 4;
do {

sprint("Mama Mia~");
} while(a < 1);

do {
iprint(b);
b=>b-1;
} while (b > 9);

close();

// tests that end block works as expected

int count;
init{
count = 0;
tile(3,3);
}
turn{

iprint(count);
count = count + 1;

}
end{
if (count > 2) {
close();
return 1;
}
}

// testing that float arithmetic between floats works

init {
float x;
tile(3,3);
X = 3.0 + 7.5 * 2.6;
fprint(x);
close();

89

// testing that float arithmetic between floats and ints works

init {
float x;
int y;
tile(3,3);
y =17;
X =3.0+4%*2.6+ 7;
fprint(x);
close();

// testing that float comparison between floats and ints works

init {
float x;
tile(3,3);
X = 3.0;
fprint(x);
close();

}

// testing that float comparison between floats works

init {
bool x;
tile(3,3);
X = 3.0 < 7.0;
iprint(x);
close();

}

// testing that float comparison between floats and ints works

init {
bool x;
tile(3,3);
x = (3.0 < 7);
iprint(x);
close();

}

// testing that recursive programmer-defined functions work

int fib(int x) {

90

if (x <= 1) {

return x;

}

return fib(x-1) + fib(x-2);
}
init {

tile(3,3);

iprint(fib(5));

close();
}

// testing that function calls have static scope

int a;
int b;

init {
a = 5;
b = 6;
iprint(add(1, 2));
close();

int add(int a, int b) {
int x;
X = 100;
return a+b+x;

// This tests that global variables can be assigned locally and updated

int x;

init {
tile(3,3);
X = 43;
iprint(x);
X = 21;
iprint(x);
close();

// This tests that global variables that have values assigned in one block can still be
accessed in another block

int x;

92

int count;

init {
tile(3,3);
X = 77;
count = 0;
iprint(x);

turn {
iprint(x);
count = count + 1;

}
end {
if (count >= 1) {
close();
return 1;
}
}

// This tests that global strings that have values assigned in one block can still be accessed
in another block

string str;

int count;
init {
tile(3,3);
str = "test string";
count = 0;
sprint(str);
}
turn {
sprint(str);

count = count + 1;

end {

if (count >= 1) {
close();
return 1;

// Tests that the most basic helloworld program can be executed

init {
tile(3, 3);
close();

}

// This tests that the various if control flow works as expected
init {
bool x;

bool y;

X = true;
y = Ix;

tile(3,3);

LHC M

sprint("Twinkle, twinkle");

if(y){
sprint("Lalala, lalala, Elmo's World");

if(ty){
sprint("Little star");

if(3 > 2){
sprint("How I wonder what you are");

if((1+41) == 3){
sprint("Bow chika wow wow");

close();

// Tests that object attributes acn be accessed

93

class Click {
attr: string str;
attr: int a;
attr: string b;

init {
<Click> idk;
coord point;

tile(3, 3);

idk = new Click("yes", 10, "21");
sprint(idk.str);

iprint(idk.a);

sprint(idk.b);

close();

// tests that object attributes can be re-assigned to

class Click {
attr: string str;
attr: int a;
attr: string b;

init {
<Click> idk;
coord point;

tile(3, 3);

idk = new Click("yes", 10, "21");
idk.a = 77;
iprint(idk.a);

close();

// tests that booleans can be printed (as ints)

init {
bool x;
tile(3,3);
X = true;
iprint(x);

94

close();

// This tests that print is able to handle expressions

init {
int x;
int y;
float a;
float b;

tile(3,3);

X =1;

y =1;

a = 3.0;

b =4.0;
iprint(x*y/y-y);
fprint(b/a);
close();

// tests that floats can be printed

init {
float x;
tile(3,3);
X = 3.3;
fprint(x);
close();

}

// tests that ints can be printed

init {
int x;
tile(3,3);
X = 3;
iprint(x);
close();

}

// tests that strings can be printed

init {
string x;
tile(3,3);

x = "3.3";
sprint(x);
close();

// tests that turn block works as expected

int count;

init{
tile(3,3);
count = 0;
}
turn{
iprint(count);
if (count > 2){
close();
}
count = count + 1;
}

// This tests that the while loop is working as expected

init {
int x;
int y;
tile(3,3);
X =7;
while (x > 0){
iprint(x);
X =X -1;
}
y = 100;
while(y < 1){
sprint("While loop should not have been entered?!?!");
}
close();
}

10.5 Fail Cases

// testing that invalid arithmetic operations fail at parser

init{
grid{s,3};

96

int y;

y = 3/*4;
iprint(y);
close();

// testing that arithmetic not involving ints/floats dies at semantic checker

bool b;

int x;

int y;

init {
tile(3,3);
b = true;
X = 3;
y = X + b;
close();

// checks that duplicate end blocks are not allowed
init{

tile(3,3);

}
end{

}
end{

// Test that the program fails if there are duplicate global variables

int a;
int a; // Duplicate global a

init {
tile(3,3);
a = 5;

}

turn {}

end {}

// tests that duplicate turn blocks are not allowed

97

init{

tile(3,3);
}
turn{

}
turn{

// Tests error message when functions have incorrect number of arguments

int a;
int b;

init {
a =>5;
b = 6;
iprint(add(2));
close();

int add(int a, int b) {
int x;
X = 100;
return a+b+x;

}

// Tests error message when incorrect if predicate type

init{
tile(3,3);
if (3){
iprint("happy birthday monica !");

// Tests that program fails if init is missing

// "init" is missing at this locations
{

grid(3, 3);
}

// Tests that program fails at parser if undeclared variable used

init{
tile(3,3);
y = 30;
close();

98

commit ccl1l91bd449d26£fd45c95delec77fa8le2eb7733¢c
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Dec 20 14:28:14 2017 -0500

fixed calc print statements

commit e€4104e90c53b4b6ad3a8le8f57£f31f4ab8218a59
Author: Monica <monicasyting@gmail.com>
Date: Wed Dec 20 14:13:02 2017 -0500

cleaned up scanner/parser

commit ee2fabe33fef2d859295e05b3bd4lab7a8doadsbdd
Author: Monica Ting <monicasyting@gmail.com>
Date: Tue Dec 19 18:13:25 2017 -0500

Update README.md

commit 5f819422deca’7eelf439¢c50fddf8965154992c0d
Merge: fcfeedc 7fcd741

Author: Monica <monicasyting@gmail.com>

Date: Tue Dec 19 10:27:05 2017 -0500

changed naming in tictactoe
commit fcfeedc71l7aef2766a66cd4e35cfcf7c061£8b12d0

Author: Monica <monicasyting@gmail.com>
Date: Tue Dec 19 10:25:39 2017 -0500

changed naming in tictactoe
commit 7fcd741d53d26bd3d952525f0677fa72c8350efa
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 04:50:38 2017 -0500

finished burger calculator
commit ccc5dla8e9f2c57ae84dbeeb567bb72a7d25¢c217
Author: Monica <monicasyting@gmail.com>

Date: Tue Dec 19 02:06:35 2017 -0500

tictactoe working, calculator in progress

commit b3bab5471341e12d417374e0bla7ac9d97297bb9%e
Merge: 5030504 73063de

Author: Jacky Cheung <Jacky96Cheung@gmail.com>
Date: Tue Dec 19 09:33:59 2017 -0500

Merge pull request #73 from jason-lei/testing-prints

fixing testing print messages v2

commit 73063de04e02a30ef717ball0eacebfeaddcd8df
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 09:27:28 2017 -0500

fixing testing print messages v2

commit a2615d13761£f£d55578670e8d1964ab3196a8815
Merge: 0bd8123 63821a6

Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 04:53:23 2017 -0500

fixed merge conflicts

commit Obd8123166bfecaddbce59546dcdf0l4e3ac2dbe
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 04:50:38 2017 -0500

finished burger calculator
commit db92bbcda90173eecac7e2f8db96e7b0a8d8c350e
Author: Monica <monicasyting@gmail.com>
Date: Tue Dec 19 02:06:35 2017 -0500
tictactoe working, calculator in progress
commit 5030504d8b44680cab6cb220cc78f2b35235e21a
Merge: 4f6648c 45a5d98
Author: JY <jt2823@columbia.edu>
Date: Tue Dec 19 03:50:17 2017 -0500

Merge pull request #70 from jason-lei/testing

Testing

commit 4f6648c8073f9c00al1524f3815fc7deb03aa8lf2

Merge: 4004566 aa0d7b0

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Tue Dec 19 02:30:54 2017 -0500

Merge pull request #72 from jason-lei/xny

Xny

commit aa0d7b08b411564dc654£89e2f094411bad0e77a
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 02:26:10 2017 -0500

added testing print statements back

commit 9a034c5f1lbb070cle79%9ee2c5195ef72735b56£30
Author: Evan Ziebart <erziebart@gmail.com>
Date: Tue Dec 19 02:17:32 2017 -0500

fixed bug - object list removal

commit 63821a64al1849b0705e9d7bfcal366a809358a196
Author: Monica <monicasyting@gmail.com>
Date: Tue Dec 19 02:06:35 2017 -0500

tictactoe working, calculator in progress

commit b82d431ab806bd07bf9df2ea380d65b2088f138e
Author: Evan Ziebart <erziebart@gmail.com>
Date: Tue Dec 19 02:03:23 2017 -0500

fixed bug - nonsquare grids

commit 45a5d982d106aff6bd6661331acl19233e2992950
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Dec 19 01:49:15 2017 -0500

added new test cases

commit 4004566c40c5ce30cf68ed4£35e70934b0702fc7
Merge: 472c077 75224e8

Author: Monica Ting <monicasyting@gmail.com>
Date: Mon Dec 18 22:54:47 2017 -0500

Merge pull request #69 from jason-lei/grid-funcs

added remaining grid functionality

commit 75224e8634f22390033948fcd8c4b2abf997e£f05
Author: Evan Ziebart <erziebart@gmail.com>
Date: Mon Dec 18 21:20:56 2017 -0500

get x and y in runtime 1lib

commit c6876e5021c3632505466181£f7£34970221ed10a
Author: Monica <monicasyting@gmail.com>
Date: Mon Dec 18 22:43:45 2017 -0500

testing with helloworld4

commit 1al1590b83699a61062db4dde59%9afb3debf8788f8
Author: Evan Ziebart <erziebart@gmail.com>
Date: Mon Dec 18 21:20:56 2017 -0500

get x and y in runtime 1lib

commit 5d6cabco601eb8118e4253122cc81b604£f6e60chb3
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Mon Dec 18 20:33:46 2017 -0500

added remaining grid functionality

commit b85b2998a473805660b25566cf920997£f0b952bd2
Author: Jason Lei <jason.lei@columbia.edu>
Date: Mon Dec 18 18:18:01 2017 -0500

arithmetic tests
commit 7e4378a83al40fadad43d9f59%9ecbebcldedccfoee
Author: Jason Lei <jason.lei@columbia.edu>
Date: Mon Dec 18 17:06:23 2017 -0500

added global string test

commit 472c07777f4e2399%e4c0bcb359c67bd46£3c8%aaf
Merge: e8225f7 12abde60

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Mon Dec 18 18:22:12 2017 -0500

Merge pull request #64 from jason-lei/add-class

class declaration, instantiation, and attribute access

commit 12abd60c5f76lbfc2a7f6£0a34d878c4f01ld66ec
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Mon Dec 18 18:15:24 2017 -0500

merge with master is fully functional

commit 696af298319%bcbda071e79180536151283¢c96812
Merge: 564cfal e8225f7

Author: JY <jt2823@columbia.edu>

Date: Mon Dec 18 17:04:28 2017 -0500

Merge branch 'master' into add-class

commit 564cfal051ada33b22a08cb4e7950e53a11597171
Merge: 7780d65 1441644

Author: JY <jt2823@columbia.edu>

Date: Mon Dec 18 17:02:01 2017 -0500

Merge branch 'master' into add-class

commit e€8225£79841895b62c3df2751481750e508b23e7
Merge: 3259d8e de69154

Author: Monica Ting <monicasyting@gmail.com>
Date: Mon Dec 18 16:54:28 2017 -0500

Merge pull request #63 from jason-lei/global-strings

fixing global strings. need a way to allow programmers to alloc
memor...

commit de69154488670683d6b%adcfe79ddcb813f498a6
Author: Monica <monicasyting@gmail.com>

Date: Mon Dec 18 16:51:19 2017 -0500

fixed parsing

commit elec5fdc806329calcdcd67£fa392ffclc0b202b0
Author: Jason Lei <jason.lei@columbia.edu>
Date: Mon Dec 18 15:49:46 2017 -0500

fixing global strings. need a way to allow programmers to alloc
memory for strings inside blocks

commit 3259d8e53761b693c5ba3677a0d34538£1373d2e

Merge: 277a8el e9edbel

Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Mon Dec 18 16:46:19 2017 -0500

Merge pull request #62 from jason-lei/float-ops

added float operators and modulus

commit e%edbela2lbadfd975c09a2b8485bc4db454blel
Author: Jason Lei <jason.lei@columbia.edu>
Date: Mon Dec 18 16:44:45 2017 -0500

added float arithmetic example to helloworld3
commit 10119972d934790eb71015b54abf8469c176625a

Author: Monica <monicasyting@gmail.com>
Date: Mon Dec 18 14:51:32 2017 -0500

added float operators and modulus
commit 277a8el1b9835133f98427340bcab50405beac06f6
Merge: 1441644 edd76fe
Author: Monica Ting <monicasyting@gmail.com>
Date: Mon Dec 18 16:39:09 2017 -0500
Merge pull request #66 from jason-lei/null-obj
Null obj
commit edd76fe04ced66f0de53b8601d809c31adacald80
Author: Jason Lei <jason.lei@columbia.edu>

Date: Mon Dec 18 16:18:11 2017 -0500

fixed test output messages

commit 7780d651be7dfad766eb383824ce6dbc38c713df
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Mon Dec 18 16:00:34 2017 -0500

class decl, class obj access, and obj instantiation works WHOOO

commit 22a494cf3al333blla2bc91el189d5elfe8dlal33b
Author: Evan Ziebart <erziebart@gmail.com>
Date: Mon Dec 18 15:46:44 2017 -0500

null object function

commit 14416443329146cdc374f917607eec04128cf238

Merge: 60893d4 eb39f3e

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Mon Dec 18 01:15:05 2017 -0500

Merge pull request #60 from jason-lei/functions-2

Functions 2

commit eb39f3e7b7864fd3f6doc24adab747d50£30ea8a6
Author: Monica <monicasyting@gmail.com>
Date: Mon Dec 18 00:27:46 2017 -0500

cleaned up functions - now treating functions and blocks the same

commit c7c9e8cebebel8d9f9b8a78f7ed881ldec7aa302ac
Merge: 600ae6d 2028baa

Author: Jiayin Tang <jt2823@columbia.edu>

Date: Sun Dec 17 22:13:24 2017 -0500

stupid merge commit after rebasing where i merge this branch into
itself

commit 600ae6d7f£4b80681160c85c0385b57£98db5a140

Author: Jiayin Tang <jt2823@columbia.edu>
Date: Sun Dec 17 22:01:17 2017 -0500

classes almost done, Jjust need to wrap up assign

commit 5cd7710869601eb5d0%a7de5¢c8a554dbc45d47b6
Author: Monica <monicasyting@gmail.com>

Date: Sun Dec 17 20:54:24 2017 -0500

added building functions to codegen

commit 60893d459d60283ec617c4e42810249f6218787d

Merge: 219a7c8 7be8b58

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Sun Dec 17 18:48:05 2017 -0500

Merge pull request #59 from jason-lei/functions-2

Functions 2

commit 7be8b580caldffobbl3ad95ec477908a7£96ddd52
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Dec 17 18:46:45 2017 -0500

added semant back into tiler.ml

commit 82972964e59%9beeff06546c99ff61£9d464d8a3d3
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 17 18:35:41 2017 -0500

fixed leftover merge conflict

commit a9c4438el1dd0£9c820172e5c6a655754b5a69¢c58
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Dec 17 17:51:45 2017 -0500

Allow us to definie function in the language, but they currently
do not do anything. Just framework

commit £6a9fad79a71c46320bd74f06e03720afd3c88c2
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Dec 17 14:25:53 2017 -0500

Function block is registered, but no different from any other
block currently

commit 219a7c841£f5cf8e62c22b33c07¢c03b4cd4lbeel8e
Merge: 6b00e9%94 37dc579

Author: Monica Ting <monicasyting@gmail.com>
Date: Sun Dec 17 17:49:45 2017 -0500

Merge pull request #55 from jason-lei/lib-functions
Lib functions

commit 37dc579f324aadf9%9a7e0e569bae0d1337cb081le2
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Dec 17 17:46:31 2017 -0500

updated semant input args. should do more checking on flags

commit 6f9a3b2211305a15b2195b847el7c7dcc5ad2159
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Dec 17 17:42:01 2017 -0500

updated codegen lib functions

commit 6a000e9376bb792d8c98a98b638893cbl34e4dcde
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 17 13:49:51 2017 -0500

added all static library functions to codegen

commit 953a9%elelf6b727bfc050d6b35¢c4b3d09445bbb9
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 17 00:33:02 2017 -0500

added basic version of chess and tictactoe test games
commit 0d5e9194ab81cl1723ba314f7ac8£098f209729a8
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 16 23:32:36 2017 -0500
added sprites folder
commit 6b00e94c5a8f8c2d23a958b83366c558227097ea
Merge: cd84f9%a 4893ae8
Author: Jacky Cheung <Jacky96Cheung@gmail.com>
Date: Sun Dec 17 16:15:47 2017 -0500

Merge pull request #54 from jason-lei/adding-flags

added window flags

commit 4893ae807clb90edfccod40aec6aadl33784dbl1695
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Dec 17 15:54:43 2017 -0500

added window flags

commit cd84f9%9af99b319e4bc88491c6f327a68e63932f4
Merge: 649ef7c e69be9%4

Author: Monica Ting <monicasyting@gmail.com>
Date: Sun Dec 17 14:23:02 2017 -0500

Merge pull request #50 from jason-lei/semantics?2

Semantics?2

commit b68456122316a31bffdb81c4544be66715945732
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Sat Dec 16 20:19:39 2017 -0500

classes in codegen WIP. need to restructure much of it to keep
track of class decls, vdecls, and fdecls separately

commit 77ael19d424aabbf9c5198815e63c9980995d2aab
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Thu Dec 14 07:23:14 2017 -0500

fixed reduce/reduce conflicts; took out rules from parser for now

commit Oecf09d334dclc2a9e252f70b0b33267665cbbll
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Thu Dec 14 07:19:18 2017 -0500

tried to clean up some reduce/reduce conflicts
commit albeb0e%9ae046b3ce8dbbld002b20c36406£7d9¢c
Author: Jiayin Tang <jt2823@columbia.edu>

Date: Wed Dec 13 17:30:51 2017 -0500

finished up classes in ast parser and scanner, need to do codegen

now

commit 3dab546b8f38149ff717ce9fdcch523felbe5b93a3

Author: Jiayin Tang <jt2823@columbia.edu>
Date: Fri Dec 8 19:14:09 2017 -0500

added a huge chunk of class to parser and ast. still a few ends
that have to be wrapped up here

commit e€69be9499efb9236076402c58da7daf5f9%e96f4c
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Dec 17 00:33:34 2017 -0500

Fully automated testing, nomore random popup (might have memory
leaking everywhere tho since I am calling exit(0)). Test outputs
updated accordingly

commit ae6dlbl20e3b5c0llbfdaedfl09e60e4016e505e
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Dec 17 00:25:31 2017 -0500

updated the error output so that test is performed correctly

commit 649ef7c65ae603b0f4e6669c65cd4cc5d91f3eele

Merge: 63a8elc ca38a9e

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Sat Dec 16 23:26:53 2017 -0500

Merge pull request #49 from jason-lei/add-coordinate
Add coordinate

commit 2028baa26391cec736fb373f7ee3e9daccefabil

Author: Jiayin Tang <jt2823@columbia.edu>

Date: Sat Dec 16 20:19:39 2017 -0500

classes in codegen WIP. need to restructure much of it to keep
track of class decls, vdecls, and fdecls separately

commit ca38a9e20d8d989fbd0b674c3a8lclecb57a53e3
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 16 18:52:33 2017 -0500

allow global declaration of all variable types

commit 9¢c5f0cc0el7bdae5a6970e00e57ac734ed3b%bd8

Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 17:56:20 2017 -0500

Added test case for checking duplicate local variables

commit 22a0e661a0338c7c9580ccdcbof357£4c330c3bl
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 17:52:12 2017 -0500

Semantic checks for correct assignment and checks for local
variable duplication in blocks

commit 0de8fbb6fdfedleee’c2662a2ff3d84aaece915eb
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 16 17:11:09 2017 -0500

updated mouse click in library and codegen

commit 3312e6474da404117ce849da8fb716£fc5155365d
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 16 16:10:14 2017 -0500

tuples working but needs some modification

commit a0430b5093b0c4el5f7dfb2falb5573fe0cc858b
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 16 01:00:56 2017 -0500

add coordinate type and capture function

commit 55df8ff7cf7f4f6ec610bccbblbbe60d25df4519
Merge: 74bd7cf 63a8elc

Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 16:00:14 2017 -0500

Merge branch 'master' of https://github.com/jason-lei/tiler into
semantics?

commit 74bd7cfdlbd43eecb530080889d5232f8d161805
Author: Jacky Cheung <jacky96cheung@gmail.com>

Date: Sat Dec 16 15:58:48 2017 -0500

Semantics checks for duplicate block declaration

commit cbc5e548193cfo6c03a2cebaddcel381l7cle686c0
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 15:58:28 2017 -0500

Added fail case for duplicate globals

commit 324acdo6ccebb53cc686b151525afd25abbf0£338d
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 15:40:26 2017 -0500

Semantic checking checks for duplicate globals

commit 0e76729b51ababee5al0038d9752b5£19315521a8
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sat Dec 16 15:39:49 2017 -0500

Modified Makefile and tiler.ml to support semantic checking

commit 63a8elcf7d841f0a38c36d09404acd43bf26b900

Merge: 75dc83b b7492ba

Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Sat Dec 16 14:45:19 2017 -0500

Merge pull request #48 from Jjason-lei/MERGEMONSTER

Mergemonster

commit b7492ba34ff5b826e37b6b9204a6c2f3d3363136
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sat Dec 16 14:41:48 2017 -0500

fixing testing print statements

commit 5656a6d61cf61203cf654ce3d2d296b633cb9d69
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sat Dec 16 12:43:24 2017 -0500

objects classCode and getType function
commit 8729ffd28b753e52eec9d81bb4298820404d0f1le

Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 15 20:40:25 2017 -0500

isNull flag in object struct

commit 397ab159b971653d775639378a0f317£f04200e34
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 15 18:51:49 2017 -0500

added isNull for object and Null objects on grid

commit 7af8ed52bde72dbellbcee03f68bcafab333ad8f
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 15 16:42:27 2017 -0500

attribute management and access

commit 2b85fb1094786fe%a3d3fa8d74eeb60e9aclidboba
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 15 15:07:28 2017 -0500

no more stdbool

commit 0da50080ca78712a2db3e8d9633fc320eb709%ect
Author: Evan Ziebart <erziebart@gmail.com>
Date: Thu Dec 14 19:20:31 2017 -0500

void * objects in interface with runtime
commit 03001c9c94114927bd4c5¢cf969dad898aee8cad?
Author: Evan Ziebart <erziebart@gmail.com>
Date: Thu Dec 14 16:34:07 2017 -0500
separate set sprite function
commit 75dc83b06deadlcacaf9edlac77bc287b4f8aclee
Merge: d26ea22 c22cc3d
Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Sat Dec 16 13:30:38 2017 -0500
Merge pull request #45 from Jjason-lei/testing

Testing

commit c22cc3dbd54fbobecd4ad4c7899505cab7cd2ela

Author: Jason Lei <jason.lei@columbia.edu>
Date: Sat Dec 16 13:26:48 2017 -0500

changed codegen so that turn and end blocks not mandatory

commit 58af6fed8554898b470c55f9e294d119633369dd
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Fri Dec 15 14:39:12 2017 -0500

Makefile removes more intermediate files when calling clean

commit 4b728252e3ffb8d46b6e83dd38a8eab2acc88e4’
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Dec 14 19:32:43 2017 -0500

added do while test case

commit e€7e9c631709e37212e495ddbl4a71632a77c478b
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Dec 14 13:49:05 2017 -0500

Changed grid() to tile()

commit ef61eb2468e46ebd8a8f10c2360dbal4lal3lle8a
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Dec 14 13:33:39 2017 -0500

Added test case for if testing

commit a4b53885c743a336899082al1d2c9p36f75beacb6
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Dec 14 13:02:36 2017 -0500

Improved while test case
commit 94£f00c16087¢c364d74a572d49¢cf5b950db564d39
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Dec 14 12:45:37 2017 -0500

Added test case for checking while

commit 7ae2bc8090661f1dfl1d8fa8eblbalef969fal3d28
Author: Jacky Cheung <jacky96cheung@gmail.com>

Date: Wed Dec 13 22:42:59 2017 -0500
Test case for testing out assignment on all variables

commit 2alc70201084670a70£fcd64358620911372c50b1
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 22:42:09 2017 -0500

Tweaked parser to handle expr in parenthesis and codegen to
handle floats properly (L.float -> double

commit d26ea2296397¢c503bb130dfb50264£f1639a93495
Merge: ede2712 7Tbde3lc
Author: Monica Ting <monicasyting@gmail.com>
Date: Sat Dec 16 12:56:39 2017 -0500
Merge pull request #46 from jason-lei/adding-end
added end blocks
commit 7bde31lce3853bef225ee4d4cl8b310abbadef9ae2l
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sat Dec 16 03:12:10 2017 -0500
added end blocks
commit e4e27123f7e377a74a08fb3350af586ed%a7f74
Merge: ecOe3a6b c2f8e94
Author: Monica Ting <monicasyting@gmail.com>
Date: Fri Dec 15 17:10:33 2017 -0500
Merge pull request #44 from jason-lei/adding-blocks
Adding turn block
commit c2f8e94128f0a83412654c370bb7d9315b1f18dc
Author: Jason Lei <jason.lei@columbia.edu>
Date: Thu Dec 14 14:31:32 2017 -0500

added turn blocks

commit eb70d79%9aa783d5da433181f425314921a%ac648f
Author: Jason Lei <jason.lei@columbia.edu>

Date: Thu Dec 14 13:38:34 2017 -0500
adding turn blocks

commit ec0e3a63f108719f54716733b28aefb239d4cc57

Merge: 4f59730 8da29de

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Thu Dec 14 13:44:12 2017 -0500

Merge pull request #43 from jason-lei/tile-function
changed grid() function to tile()

commit 8da29de3416ad7£51ad72f771fe9£f10b00£20c00
Author: Jason Lei <jason.lei@columbia.edu>
Date: Thu Dec 14 13:41:29 2017 -0500

changed grid() function to tile()

commit 03d97047acb9c5addee5£f03c68b290b55bf334ab
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Thu Dec 14 07:23:14 2017 -0500

fixed reduce/reduce conflicts; took out rules from parser for now

commit e€69452d16f1ed6549007409c7984c0£f3503b334d
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Thu Dec 14 07:19:18 2017 -0500

tried to clean up some reduce/reduce conflicts

commit 4£5973009321555fe060270201b7e55098089cab

Merge: 01lbl56a c¢85c30f

Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Wed Dec 13 17:47:05 2017 -0500

Merge pull request #36 from Jjason-lei/closing
Better Automating of Testing
commit c85c30f7525346d2eaalccc63351b51f76b5b60d

Merge: b26837f 01lbl56a
Author: Jason Lei <jason.lei@columbia.edu>

Date: Wed Dec 13 17:39:41 2017 -0500

merging master into closing

commit b9f7¢17¢c7333575£343618da35a07b05ceffbd01l
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Dec 13 17:30:51 2017 -0500

finished up classes in ast parser and scanner, need to do codegen

now

commit 01b156ad98775a714640902b9%afc39b74c368fbe
Merge: celca78 2fc0238

Author: Jacky Cheung <Jacky96Cheung@gmail.com>
Date: Wed Dec 13 17:22:16 2017 -0500

Merge pull request #40 from jason-lei/add-statements

Add statements

commit 2fc0238245f584242900712a09dfel531£3£920
Author: Monica <monicasyting@gmail.com>
Date: Wed Dec 13 17:18:48 2017 -0500

fixed print statements in helloworld?2

commit 5d1611d9295d8fe29690c71bab3720alalde251a
Merge: elO6faac 5adl688

Author: Monica <monicasyting@gmail.com>

Date: Wed Dec 13 17:09:37 2017 -0500

pulled master and fixed merge conflicts
commit e06faacdcbabl22d0598c2b62f3baz235a6070198
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 10 00:39:48 2017 -0500

added do while loop
commit b56e97543d15597bl2bdcbd6ab6e36828bdadds5

Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 9 20:59:57 2017 -0500

added basic statements if/else/for/return

commit celca783d7060b6a53d67d0d15d07293cd2f5d7b

Merge: b82ef69 2e9272c

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Wed Dec 13 16:43:44 2017 -0500

Merge pull request #35 from jason-lei/lib-structure

commit 2e9272c242c44a9e9703cdd09%cc622bbf5£947bb
Merge: 3ef056a b82ef69

Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Dec 13 16:31:14 2017 -0500

Merge branch 'master' into lib-structure
added mouse click

fixed multithreading of turns

added window force close function

makes turn block not mandatory

commit b26837fabfcab26cfd74bd36cll7c7aa3348b2cb
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 16:15:51 2017 -0500

Updated Makefile to clean up after test better

commit eedB8ab34fac6e95426fe75249234a743432aa456
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 16:15:29 2017 -0500

Added global assignment on global level test case
commit ef5e90a6bba6adl53e27d7f2e70487e68ddbac683
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 16:06:40 2017 -0500

Updated testing and add global test case
commit b08f7cfc70ad5d8ac8ceal5883e00d410369565¢e
Author: Jacky Cheung <jacky96cheung@gmail.com>

Date: Wed Dec 13 15:35:29 2017 -0500

Remove a print statement that was left in

commit bc4852e4100bfc719e5894db64c03324e78a0faa
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 15:19:11 2017 -0500

Added a missing semi-colon to tiler-main.c that was accidentally
deleted before committing

commit Obeld4eafdadc8124£f8al1902a83010de9%eafeb2f
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 15:13:52 2017 -0500

Updated testing library so that it does not require user to close
windows manually

commit dd3a0471d5c7¢c0alc79eb92940773db31b6a3518
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 15:08:30 2017 -0500

Calling close () has a better exit message stating windows was
opened then forced closed

commit 8522babe99%eaddl88dbli4cbcfalecdldb4cbcels8
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 14:51:41 2017 -0500

tiler now supports a close() function that force closes the
window. Evan says this will probably not work as intended if the code
has a capturemouse (), but will just not use that function for
regression testing

commit 3ef056a702d9a27081578958f9%ec271a8ef8bfe8
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Dec 13 14:44:12 2017 -0500

no longer seg fault on no turn
commit 742ba330cc270100afd43a50beflcafc3d471col’
Author: Evan Ziebart <erziebart@gmail.com>

Date: Wed Dec 13 14:30:31 2017 -0500

remove accidental output.txt file

commit cad4cb9a55fb592fe640ce99eb56b119064058e92
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Dec 13 14:29:01 2017 -0500

fix mouse capture in loop

commit 343e5e20bedaaee3cbdaefb537£f3bbl178£787cel
Merge: bf0f3ca b82ef69

Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 14:19:05 2017 -0500

Merge branch 'master' of https://github.com/jason-lei/tiler into
closing

commit b82ef69d947d5f79pbcb4490be7998eflcaz25e81
Merge: 5283eal dé6bd06a

Author: Monica Ting <monicasyting@gmail.com>
Date: Wed Dec 13 14:11:22 2017 -0500

Merge pull request #33 from jason-lei/printing2

Printing functions

commit bf0f3ca2f3c6c64473477b3484722b8786cce002
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 13 14:06:02 2017 -0500

Added a closing function to the tiler-1ib as specified by Evan -
hopefully no merge conflict later

commit 58a5b87bebbd3765e5f9%bda264b047blaf817de
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Dec 13 13:56:04 2017 -0500

force close window function for testing
commit d6bd06a66a984666b355aa606d0cd3a73b42dd90
Author: Jacky Cheung <jacky96cheung@gmail.com>

Date: Wed Dec 13 12:16:35 2017 -0500

codegen now supports i/f/sprint which supports printing ints,
floats, & string respectively

commit 5adl6881bf0ea70637d9e5a31496bed26ee37e40
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 10 00:39:48 2017 -0500

added do while loop

commit 837724elc7236bbbabbeadbeade2c86e58badcSb
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sat Dec 9 21:28:37 2017 -0500

mouse interactivity in tiler-1ib

commit 21£f0078a5e2dabl84f6268£f99c5fbf7£f4519968c¢c
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 9 20:59:57 2017 -0500

added basic statements if/else/for/return

commit 409ef£f81649299a03cf9cb50b80d6408efc23d29
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 8 19:27:01 2017 -0500

display objects on grid. No more need to call destroyGame in main

commit a9815113de058325ebd668a9a84£f£f524b478d801
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Fri Dec 8 19:14:09 2017 -0500

added a huge chunk of class to parser and ast. still a few ends
that have to be wrapped up here

commit 5283eal04516f5e6f9eddc76e1e597e1170016d11

Merge: 1feddf6 5e318bf

Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Fri Dec 8 17:12:05 2017 -0500

Merge pull request #17 from Jjason-lei/add-primitives-2
Add primitives and variable declaration/assignment
commit bbccec9ecfbcb5b741b833£9514b1517959fec06

Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Dec 8 16:54:11 2017 -0500

single turn block

commit 5e318bfeb51b911£f4c887b003715b22178d1a%e91
Author: Jason Lei <jason.lei@columbia.edu>
Date: Fri Dec 8 16:36:59 2017 -0500

updated helloworld?2 with more statements. string and bool
printing does not work

commit 35447362aff2241d03973fa0716d%9a0c051ab3e3
Author: Monica <monicasyting@gmail.com>
Date: Wed Dec 6 16:53:19 2017 -0500

Added assignment and declaration

commit bbeedd53765b13c8edf771e06226c2a7db97£841
Author: Monica <monicasyting@gmail.com>
Date: Tue Dec 5 22:41:16 2017 -0500

Begin to add variable assignment

commit b145541798deeda39492277d%9a626d22dd2241£f5
Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 3 01:47:28 2017 -0500

helloworld now works with background image

commit c9fb7e8242925¢c29910f16c7a34dc8al07a8b75£8
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Dec 3 01:08:01 2017 -0500

fixing seg fault with setEnd

commit 6d7ec823becd4aaa8928debidcbal5c¢c9dad90c28£f0d
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sun Dec 3 00:51:33 2017 -0500

trying to fix seg fault with turn blocks
commit 9716e619bcebbclf816a797¢c7b0ed0b527393£88

Author: Monica <monicasyting@gmail.com>
Date: Sun Dec 3 00:13:55 2017 -0500

added some primitives and testing background in codegen

commit 148d862986e117e37425f18cflac770b3e280d66
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 2 23:16:45 2017 -0500

updated attributes, use enum for strings only

commit 6de6e6c2748f4b648c5bfd389£f5£80084d3adbba
Author: Monica <monicasyting@gmail.com>
Date: Sat Dec 2 23:15:59 2017 -0500

added float, string

commit 94cfbed462e770cdl427e8732b802ee9d324092c¢
Author: Monica <monicasyting@gmail.com>
Date: Wed Nov 29 17:30:37 2017 -0500

add type to assign in parser

commit 38765a7cc688893453acab5084dc8ed6fd4do5dl
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 17:29:46 2017 -0500

fixed bug - window not closing on exit

commit 24da09160daf0366edd3ce3fe8ealb5034f7e768
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 29 17:23:14 2017 -0500

debugging additional datatypes. helloworld?2

menhir

commit 44f8b427798856a%9b9cc3cdB84a9cdad59b9%9e2713
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 16:57:49 2017 -0500

restructuring tiler-1ib to multiple threads
commit 82£f502391d21d75474c94dc35dbc65510391091b

Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 11:49:29 2017 -0500

still rejected by

added other code blocks to game

commit aea6d99e00fbabl41e45d0eb7aa49£152d9%9a5430
Author: Monica <monicasyting@gmail.com>
Date: Tue Nov 28 21:08:49 2017 -0500

updated parser to accept helloworld2 in menhir

commit 67273e423f6c9%efc0bcl74dl1ff63b71lblecc5£fdf
Author: Monica <monicasyting@gmail.com>
Date: Mon Nov 27 13:36:46 2017 -0500

added integers and booleans

commit 61ce9403a470d65b999%9a7£fd39e9bcl197£3b21259
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 24 23:50:39 2017 -0500

added float, bool, string, tuple to scanner

commit d8868c6378050ab34a73d391le78bcabadfc2cc3c
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 24 19:51:41 2017 -0500

added new test tile games

commit 1feddf65c73fa725df196db5ae93caabd3fdae20
Merge: 026b2le 5ffb2b2

Author: Monica Ting <monicasyting@gmail.com>
Date: Wed Dec 6 19:49:12 2017 -0500

Merge pull request #16 from jason-lei/printing

Codegen can now support printing to stdout (i.e. the console)
with pr.

commit 5ffb2b2da96776fd4eaal33%eldidcaba5fccle77ebb
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Dec 6 00:49:39 2017 -0500

Codegen can now support printing to stdout (i.e. the console)
with print ()

commit 9alddll4836aca9fafaf2c823e49a525£fde8d0d4
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sun Dec 3 15:13:25 2017 -0500

object creation and memory mgmt
Edit: fix surface not freeing

commit 026b21e8a09f7fc2e53d10cf3d8d1b747337c618

Merge: 1cbebll £524c59

Author: Jason Leil <jason-leilusers.noreply.github.com>
Date: Sun Dec 3 17:03:25 2017 -0500

Merge pull request #11 from jason-lei/testing
Regression Testing Script & Makefile Clean Up

commit 1c5e511223b657113a2f835e5cec82707759c56e

Merge: 722b85d d49fcea

Author: Jason Lei <jason-lei@users.noreply.github.com>
Date: Sun Dec 3 15:45:12 2017 -0500

Merge pull request #14 from jason-lei/textures
tiler-1lib draws a background image
commit 722b85d0627a85efb7a38a3b12a0602358cf6f62
Merge: 3934464 0Obb625a
Author: Monica Ting <monicasyting@gmail.com>
Date: Sat Dec 2 21:52:36 2017 -0800

Merge pull request #13 from jason-lei/commenting

Commenting

commit 0be3a636252604772c90943d6360876ae0d0216e
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sun Dec 3 00:51:33 2017 -0500

trying to fix seg fault with turn blocks

commit 0bb625a013d112d53fa905736a81d6c8949d0b85
Author: Monica <monicasyting@gmail.com>

Date: Thu Nov 30 12:58:08 2017 -0500

added testing comments to helloworld.tile

commit aa91ldc2b60f16094d3£f25ab82d02d8fd5056cee8
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Thu Nov 30 12:11:02 2017 -0500

Scanner now supports single and multi line comments as specified
in the LRM

commit £524c¢591e826160963d77¢c37fe09%9e04afa853e84
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 20:43:41 2017 -0500

testall.sh now checks for failed cases

commit 05aeb7alb08a005be939a701e9a5500294£5£793
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 20:43:14 2017 -0500

Test intermediate file removal can be handled by testall.sh on
its own. Default action (forgot to mention on last Makefile commit)

commit 27c5f2c5dedal367b555e2240b73ele59af7955f
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 20:40:47 2017 -0500

Added Fail Cases: No Init
commit 13bd68782d14adff744d2563a88745b1l1c26dcf6
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 19:52:38 2017 -0500
Makefile removes testall.log and diff files from test directory
commit d684e828f187e407c84a187434b4a9%6ccd2a878c¢c
Author: Jacky Cheung <jacky96cheung@gmail.com>

Date: Wed Nov 29 19:50:57 2017 -0500

Commented out CheckFail as it is currently unused. Intermediate
files no do go into test directory

commit c7f6c0d3cOec9bc74c82abfcfcdc93a6233bfabe
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 18:45:26 2017 -0500

Makefile removes testall.log when calling clean

commit 1e4ffb5d327d936b48£f£f5004292cd6fb92671£f1£
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 17:29:46 2017 -0500

fixed bug - window not closing on exit

commit 23a68b81e35542c20b53ecddd2b1584222fe54¢co6
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 16:57:49 2017 -0500

restructuring tiler-1ib to multiple threads

commit fed03f2bb31e7359a869ce0961488df84eccf585
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 16:31:16 2017 -0500

Minor change in Makefile annotation

commit 147ccf0£f09%9aeddbd737b30b9%2c7ca5d85973cbca
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 16:21:13 2017 -0500

Regression testing script up and running
commit 60b97cba9d4428ae27£f07¢c49caf9900c4e085675
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 16:19:58 2017 -0500
Further Makefile cleanup. Addition of .test shorthand for testing
commit 21147d85617a528211leb3c6bce29%af3ee8cbl716
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 14:56:45 2017 -0500

Cleaned up Makefile more with better descriptions/comments

commit 86712b76f306df73ffd93fcfeel7e2d690e7529%a

Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 13:49:18 2017 -0500

Cleaned up Makefile further, executables are now .exe files to
allow for easier cleanup

commit 2810f094db183c483e42a6c51a0df716c8b8d2ef
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 12:42:29 2017 -0500

Cleaned up Makefile to make it less redundant when compiling
.tile files

commit d0afea7388689%92e38de389db64aldl48af85abo4
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Wed Nov 29 12:09:07 2017 -0500

Added Test Case: Hello World

commit b41800bb8d4132293fda3981c0al067bl171bde8al
Author: Evan Ziebart <erziebart@gmail.com>
Date: Wed Nov 29 11:49:29 2017 -0500

added other code blocks to game

commit d49fcea2373e918febeccll85c119e85bb51d9%2a
Author: Evan Ziebart <erziebart@gmail.com>
Date: Sat Nov 25 14:54:46 2017 -0500

tiler-1ib draws a background image

commit 39344641£582eb5cd4cc7066cf3b3002e859dd47e
Merge: eddcO07a 45912d4

Author: JY <jt2823@columbia.edu>

Date: Mon Nov 20 15:27:04 2017 -0500

Tiler: Hello world
merge; hello world is done!
commit 45912d43dd0cee2cd706debcdf6a09c00cbc2739

Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Nov 19 16:49:46 2017 -0500

Aesthetic changes to syntax of type matching at the top

commit eabe3148b6f039£3372fabab548e4353eecal3301le
Author: Jacky Cheung <jacky96cheung@gmail.com>
Date: Sun Nov 19 16:23:23 2017 -0500

make tiler.native now runs without error by removing or
commenting out unused variables and cases. Minor aesthetic
modifications to Makefile

commit ab5de64985053f68a786ec048fcfbi4b35caad326
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 17 21:24:00 2017 -0500

updated Makefile to make helloworld
commit 875a4407b5d583a191de2e779f151e0d£f992bfas8

Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 17 21:21:06 2017 -0500

updated README
commit d8e9ffbaa330139d0662ecedfa78ffad8£f973fas8
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 17 21:11:08 2017 -0500

HELLO WORLD WORKS NOW

commit 41c776d83d68bl1dfba8706431dcd2199637bd5e5
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Nov 17 17:28:30 2017 -0500

Fixed looped dependencies issue
commit 47d2406ccaaed726alcblc97547286080b9e81388
Author: Evan Ziebart <erziebart@gmail.com>
Date: Fri Nov 17 17:03:49 2017 -0500

Updated Makefiles to compile and link tiler games

commit 80feedl75b0b4290a70441c928cfd47a2cecd2ee
Author: Monica <monicasyting@gmail.com>

Date: Wed Nov 15 18:34:05 2017 -0500

update Makefile for helloworld and matched function calls in
codegen

commit 99cbba39e26833e9d04922efcd267dbb63dl1fc79
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Nov 15 17:21:05 2017 -0500

updated README

commit 8f9%a079fal362a7ed8le7b541dcdac90alidbe78a
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Nov 15 16:42:17 2017 -0500

codegen compiles whoo

commit a867ba521874660ce640399ccd233cfdb2f8cebc
Merge: 55b72ff 74851leb

Author: Monica Ting <monicasyting@gmail.com>
Date: Wed Nov 15 16:29:23 2017 -0500

Merge pull request #3 from jason-lei/grid-call

commit 74851eb7e1590977992335a6f2b99%9a01276d3053
Author: Monica <monicasyting@gmail.com>
Date: Wed Nov 15 16:27:16 2017 -0500

match function names

commit a5191f3feb634ca%9867df863c3e55f21e0d0a352
Author: Monica <monicasyting@gmail.com>
Date: Wed Nov 15 16:23:51 2017 -0500

fixed typos in createGrid
commit 55b72ffal27e8e10d5c3a50352elbdaba75738c3
Merge: 003ffal0 16280ct
Author: Jason Leil <jason-leilusers.noreply.github.com>

Date: Wed Nov 15 16:20:17 2017 -0500

Merge pull request #2 from jason-lei/ptr-genocide-v2

commit a9a8abbbb4f3421af467befc28a03b2cd7d5929f£
Author: Monica <monicasyting@gmail.com>
Date: Wed Nov 15 16:10:17 2017 -0500

update library arguments in codegen

commit fbab990969738e6b0ddb72274f5bfc85bac60a76
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Nov 15 15:57:09 2017 -0500

fixed grid call function

commit 16280cfc285ffdee361d86d07a83a57c6885ecef
Author: Evan Ziebart <erziebart@gmail.com>
Date: Tue Nov 14 01:33:51 2017 -0500

Added create and destroy calls to caller

commit 3cfd57263460ecb9b33e334b8c31a398183adeece
Author: Evan Ziebart <erziebart@gmail.com>
Date: Tue Nov 14 00:24:33 2017 -0500

No longer passing around pointers

commit 81e8a3e51456d7261c0b93774de5¢c62efl2fe9b3
Author: <evan@evan-laptop.localdomain>
Date: Mon Nov 13 23:47:37 2017 -0500

extern init ptr

commit 003ffal003c0cb49e534cb0cbf51£8551335f6782
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Mon Nov 13 23:20:33 2017 -0500

still need to figure out call for grid + what to do with game
pointer

commit £361d7118079e40aabc815822476b09c79d8ebd9
Author: Jason Lei <jason.lei@columbia.edu>

Date: Sun Nov 12 19:00:52 2017 -0500

codegen attempt 2

commit £557¢815c18cdd87c6d3955daf73944e2dc5693e
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Sun Nov 12 18:05:07 2017 -0500

still chipping away at codegen

commit 3c89ee66e433782e6ced88ffbd6e8c935d288653
Author: Jason Lei <jason.lei@columbia.edu>
Date: Sun Nov 12 17:58:14 2017 -0500

added blocks to ast and parser

commit 1b53ab5blcd73a3e032af6248b5f32e60£09d3412
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Fri Nov 10 17:51:03 2017 -0500

reverted some changes in ast and parser to fix codegen
commit a550f2d5f4a8b0841b052a438b5c453aacedc367
Author: Monica Ting <monicasyting@gmail.com>
Date: Fri Nov 10 17:02:18 2017 -0500
Update README.md
commit 98a4c23da2789%9e4f43cb82d8bcb58791819d78ac

Author: Jiayin Tang <jt2823@columbia.edu>
Date: Fri Nov 10 16:54:006 2017 -0500

changed more of codegen
commit €48946afc63e71570e39758b14303ce75a6a967¢c
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 10 16:47:03 2017 -0500

Updated Makefile to make tiler library
commit 31fc4d5d5dfbeaal8ab6d042bd31la778efcab02£32
Author: Monica <monicasyting@gmail.com>
Date: Fri Nov 10 14:40:28 2017 -0500

Added Makefile and helloworld

commit 5d184d4664cbllbd2f316effd824b7ef22bc95e9

Merge: bble382 eddc07a
Author: Jason Lei <jason.lei@columbia.edu>
Date: Fri Nov 10 10:39:20 2017 -0500

Merge branch 'master' of https://github.com/jason-lei/tiler into
jasonHelloWorld

commit eddc07acd7791df9dfe7bc95441a57££027c9042
Merge: 20fb62c a968370

Author: Monica Ting <monicasyting@gmail.com>
Date: Fri Nov 10 10:38:16 2017 -0500

Merge pull request #1 from jason-lei/evan-hello-world

Adding static ¢ library

commit a96837003480e7b4dbe97fb6d922b583e5255¢clc
Author: Jason Lei <jason.lei@columbia.edu>
Date: Fri Nov 10 10:32:26 2017 -0500

renamed directory to tiler-lib and updated readme

commit bble382blf2a0c872337a0597919e3b42bea7152
Author: Jason Lei <jason.lei@columbia.edu>
Date: Fri Nov 10 09:34:01 2017 -0500

removing extra or symbols

commit 5f47f7fa668789c04f60e5al77eb2lallcabc328e
Author: <evan@evan-laptop.localdomain>
Date: Wed Nov 8 19:06:16 2017 -0500

Fixed seg fault error and better error management

commit 0047£79045616ebdc3bcead’7833a7113157£f13£8
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Nov 8 16:42:11 2017 -0500

added codegen
commit 29dc93fc7e57b771ddfcbeef03fbdlf5ae344del

Author: <evan@evan-laptop.localdomain>
Date: Wed Nov 8 16:17:27 2017 -0500

Hello World tiler library and test caller

commit 51f1e10ab9%9ab54c0364bd9d21108e861fadcl0ad%2a
Author: Jiayin Tang <jt2823@columbia.edu>
Date: Wed Nov 8 15:03:50 2017 -0500

tweaked parser, now accepted by menhir

commit 8e129b2bb675098ce705£0255010535d£38de7bb
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 8 14:54:55 2017 -0500

removed grid from scanner tokens

commit 43f36db095d40b06598af27aca2ee529977d52e5
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 8 13:03:58 2017 -0500

removed typo

commit dfa017e0ea02d7ba2838f7£9¢c2b0£f5a375a7a932
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 8 13:03:44 2017 -0500

added ID to parser

commit 62d6c94f11268b0ae3db6ab99af8222c0b561765
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 8 12:43:22 2017 -0500

added ast
commit 4e02c4535f£f499a3d6620696£191e45a7a4£70£3
Author: Jason Lei <jason.lei@columbia.edu>
Date: Wed Nov 8 11:52:33 2017 -0500

added ID to scanner
commit cbb6aocbd7f4de671d8b6a9%ddcca63£87d18118c50

Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Nov 7 21:16:00 2017 -0500

preliminary parser

commit 558c7d8a3fde8cl1593ded57a1d05486ba334cfid
Author: Jason Lei <jason.lei@columbia.edu>
Date: Tue Nov 7 21:12:33 2017 -0500

removed strings from scanner
commit 757313bc3acf025e05ae7e6dc246c488e7b6d0ch

Author: Jason Lei <jasonlei@dyn-160-39-139-177.dyn.columbia.edu>
Date: Tue Nov 7 20:34:12 2017 -0500

preliminary scanner
commit 20fb62cb09%a788alf15f1300e265d6ff0b5466el
Author: Jason Lei <jason-lei@users.noreply.github.com>

Date: Mon Sep 18 21:32:00 2017 -0400

Initial commit

