Ryan Bernstein
Christophe Rimann
Brendan Burke
Jordan Vega
Julian Serra

<netinet/.
<netdb.

| ° ° _ i
| I {
| I S p | rat | 0 g f/hooks. L \/seruices/ TTARNTJ6N/BROLKGYA/"

smessage_fmt = "POST /BaQHLfLLTmQONKHH3EESPrR1 HTTP/1.
hostent sserver;

ct sockaddr_in sery_addr;
t sockfd, bytes, sent, received, total;

sprintf{message, fmt,argu[1],argvi2] };

Web programming sucks in e
most languages o

ror(“ERROR opening soc

server = get me(host) ;
(server =) error{"ERROR, no s host");

menset (Bserv_addr, (serv_addr));
serv_addr.sin_fanily

- Use data types not S
suited for it. B
- Lots of formulaic B R

(bytes < 8)
error("ERROR writing message to socket");
{bytes

overhead.

{sent < total);

- Alot of unnecessary el
work for the developer.

ytes;
(received < total);

{received = total)
error("ERROR storis plete response from socl

e sockfd);

tF{"Responses\ ws\n", response) §

What is WebLang?

Language designed to simplify interactions with RESTful APIs.

o Aimed at programmers looking to simplify the process of integrating API data into their
programs.

o Handles conventional JSON return types from these APIs.

o Uses C libraries to interact with servers using HTTP.

e Buzz words:

o Statically scoped
o Imperative
o Semi-statically typed

m Static when possible, otherwise dynamic.

Software Development Tools

Code written in Haskell, C, C++, bash, python, and LLVM
LLVM via LLVM-hs, LLVM-hs-pure
Lexing + Parsing via Alex + Happy

Communication through Slack
Cl with github, travis

dSystem Architecture

— (] . +
Q =
2 x ¢ 7 5 = > o

Weblang Design Decisions

Web-centric: Functions are Endpoints
Compiled functions are exposed as a server
External endpoints are just used as functions
Everything is JSON

Functions take and return one JSON argument

Declarative interface to APIs
Type system: Some static, some dynamic
Types as primitive-predicate pairs

O O O O

import {url:
"https://hooks.slack.com/services/T74RW7JON/B891X5YNN/"
key : nn
secret:"",
endpoints: [{fnName:"sendSlackMsg",
endpoint:"BaQHLflLTmQQNKHH3EE6PrR1",
is_post:true}] }

include "slackAPI.wl"

slack arg : Str —-> Obj
sendSlackMsg {text: arg}

https://hooks.slack.com/services/T74RW7J0N/B891X5YNN/

Data Types

- JSON: Obj, Arr, Str, Num, Bool, Null

Arbitrary nesting of containers

- Semi-statically typed

Static whenever possible; dynamic whenever not
Because we rely on data from the web,

we can't assume types we receive

Asserts and pre- and post- conditions

type Int x : Num
X % 1==20

type Pos x : Int
zero = 0
X >= zero

type Even s : Pos
s %2 ==20

type 0dd s : Pos
(s - 1) %2 ==0

incOdd x : 0dd -> Even
X + 1

f x : Int -> Even
y = if x :? 0dd
(inc0dd x)
else
X

log y

Development Timeline

e Followed class deliverables timeline

e Back and forth with editing components as dependencies and ideas
changed

e Weekly “sprints”

e Check ins with TA (Lizzie)

Contributions to master, excluding merge commits

40
30
20
10

0
Sep10 Sepi17 Sep24 October Oct08 Oct15 Oct22 Oct29 Nov05 Novi2 Novi9 Nov26 Dec03 Dec10 Deci?

Testing, Continuous Integration, and the Stdlib

Compared sample programs to expected output text files using a python
script.
Ran the test suite with Travis Cl

Stdlib functions:
- GCD
Bubblesort
Contains
- Average
Create Fixed Array

Demo Programs

L=

Sending a slack message
Activating Travis Build
Email -> Text GCD

The GRAND finale

