
SANDBOX
Megan	Fillion,	Gabriel	Guzman,	and	Dimitri	Leggas

mlf2179,	grg2117,	and	ddl2133

Overview

oMotivation	
o Improve	our	understanding	of	digital	systems	
o Simple	HDL	to	facilitate	our/others’	learning
o A	challenging	PLT	project	

o Goals
o Simple	and	easy	to	code	HDL	for	programming	students	learning	about	

digital	systems.	
o Python	like	syntax;	Scope	determined	by	indentation
o Succinct		with	shorthand	syntax	(more	later)
o Functional	flavor	to	the	language

Tutorial

o Functions	represent	circuit	blocks
omap	a	list	of	input	busses	to	a	list	of	output	busses

o Busses	represent	k-bit	integers
o Start	off	with	the	function	sandbox

oMain	executive	function
o Inputs	and	outputs	of	sandbox	function	are	the	io of	the	circuit
oBuilds	the	circuit	through	calls	to	other	blocks

o The	clock	is	internal	and	implicit

Simple	Sample	Code
/	our	hello	world	/
(bit	a,	bit	b,	bit	cin)	sandbox	(bit	s,	bit	c):

a	^	b	^	cin ->	s
(a	&	b)	^	(cin &	(a	^	b))	->	c

**
/	simple	counter	/
()	sandbox	(bit	s):

s	+	1	-:	s

Compiler	Structure

Flatten

oCollapses	sandbox	program	into	list	of	outputs	in	terms	of	
inputs
o Recursive	walk	over	function	calls

oMaps	actual	inputs	to	formal	inputs	and	formal	outputs	to	actual	outputs
/	flattening	a	function	call	/
(bit	x,	bit	y)	halfadder (bit	w,	bit	z):

x	^	y	->	w
x	&	y	->	z

(bit	a,	bit	b)	sandbox	(bit	s,	bit	c):
[a,	b]	halfadder [s,	c]

a b ^ s -> a b & c ->

Flatten	Fell	Flat

o Also	needed	to	break	busses	into	operations	on	single	bits	
and	support	shorthand	function	calls;	maybe	in	the	next	
24hrs!!!!!!	

/	what	we	wanted	it	to	look	like	/
(bit	a,	bit	b,	bit	cin)	fulladder	(bit	s,	bit	c):

a	^	b	^	cin ->	s
(a	&	b)	^	(cin &	(a^b))	->	c

(bit	a.4,	bit	b.4,	bit	cin)	sandbox	(bit	sum.4,	bit	cout.4):
[a,	b,	cin::cout(0:3)]	fulladder	[sum,	cout]

Codegen
o Translates	post-order	traversal	given	by	flatten	into	a	single	LLVM	
function
oPushes	literals	and	variables	from	the	flattened	list	onto	a	stack	and	pops	
them	as	operations	and	assignments	are	encountered	in	order	to	build	LLVM	
statements

o Sandbox	allows	multiple	returns
o The	function	created	in	LLVM	takes	a	pointer	to	the	inputs	and	outputs
o indexes	the	memory	in	both	arrays,	loads	the	inputs	at	the	beginning,	stores	
the	outputs	at	the	end	

o Sequential	Logic
oKeeps	track	of	states	by	allocating	two	static	LLVM	variable	for	each	sandbox	
variable

o If	sandbox	is	called	with	state	0,	load	from	0	and	store	in	1	

Tic

o Simple	function	written	in	C	to	call	the	function	generated	in	LLVM	
inside	of	a	loop,	printing	outputs	at	each	step

o Defines:	extern	void	sandbox(int*	ins,	int*	outs,	int state)
o Build	an	executable	for	a	sandbox	file	by	compiling	it	to	bytecode	and	
then	compiling:	gcc –o	name	tic.c name.s

Lessons	Learned	

o Teamwork	is	hard	and	different	parts	of	projects	depended	on	others
o Everything	took	longer	than	we	thought
o Former	project	code	on	Edward’s	website	was	immensely	helpful
o Written	test	cases	helped	to	find	bugs	and	improve	our	
understanding	of	semantics

o Improved	our	understanding	of	version	control	systems
o Pick	a	smaller	project	next	time!

