A Pixel Processing Language

Justin Borczuk, Jacob Gold, Maxwell Hu, Shiv Sakhuja, Marco Starger

A Preview of What’s to Come

Who did what?

Justin Borczuk - LLVM implementation guy, Windows user

Jacob Gold - refactoring for SAST, C functions, “go-to guy”

Max Hu - project manager, {front-end guy

Shiv Sakhuja - semant construction guy (and user #o/ artist-in-residence)

Marco Starger - testing and standard library guy

Overview

What is PIXL.?

Why PIXL?

e |Image processing can often be complicated
e PIXL presents simple syntax for lengthy image mampulanns
e example: |m performs a vertical flip on the matrix m.

Vertical Flip

Overview

e Compiles to LLVM with garbage e Large PIXL function library:
collection o change opacity
e C-like syntax and semantics o change RGB
e Pixel and matrix types o grayscale
e Imagefilel/0 o subtraction
e Matrix Operators
o Crop

o flip horizontal/vertical

Syntax Basics

Type

int, string, pixel, matrix, bool

Control Flow

if, else, while, for, return

Types and literals

lint a;
int pixel p;
pixel matrix pm;

Arithmetic Operators

+ - X/ ++ - =

a=1;
p= (42, 42, 42, 42);
pm = [p,p ; p.pl;

Conditional Operators

= < > <= >=

Special Pixel/Matrix Operators

~ | + - << > [] &&,

Some Library Functions
_ pixel matrix flipPixelMatrixH(pixel matrix pm) {

int height;
int matrix cropIntMatrix(int matrix m, int rl, int r2, int cl, int c2) { int width;
int i; int i;
%“: 1F int j;
int a; i i
; A . pixel matrix pm2;
int matrix m2; height = pm. rows;

m2 = matrix{r2-rl, c2-cl, int); width = pm.cols;

for (i =rl; i < r2; i=i+l) pm2 = pm;
{

for (j = cl; j < c2; j=j+1) for (i = @; i < height; i=i+1})
{
o Lot for (j = 0; j < width; j=j+1)
{
k ! pm2[i1[j] = pmlil [width-1~j1;

return m2;

}

return pm2;

Implementation

Architecture

PIXL
Source Code
- B3

: Parsing

|

Semantic Checking

..I‘...‘ .\. |

Testing PIXL

Automated test suite
testall.sh

LLC="11c"

Ce="cc"
pixl.native"

ulimit -t 38

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0

Usage() {
echo "Usage: testall.sh [options] [.p files]"
echo Keep intermediate files"
echo Print this help"
exit 1

¥

SignalError() {
[serror -eq @ 1 ;
echo “FAILED"
error=1

echo

testixellitl.p...
testixelReassignment.p...
testrintInt.p...

test-returnX. ..
test-rows...

test-subtractIntMatr
test-subtractPixel...
fail-add...
fail-assig
fail-cr.p...
fail-cr2.p...
fail-declare...
fail-incArguments. ..
fail-inconsistentMatrix...
fail-matrixAssign...
fail-matrixAssignl...
failixelAssign.p...
failrint.p...
failrintl.p...
fail-reassignment...
fail-undeclared...

fail-unrecognizedFunc. ..

marcostarger@Marcos-MacBook-Pro :~/Dropbox/PLT/PIXL/pix1$ I

ImageNet Classification
with Deep Convolutional
Neural Networks

Krizhevsky, Alex et al.

4.1 Data Augmentation

The casiest and most common method to reduce overfitting on image data 1s to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 51} We employ two distinet forms
of data augmentation, both of which allow transformed images 1o be produced from the onginal
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemnes are, in effect,
computationally free.

The: first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224 = 224 patches (and their horizontal reflections) from the
256 » 266 images and training our network on these extracted patches®. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 » 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network's softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensitics of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To cach training image, we add multiples of the found principal components,

with magnitudes proportional to the corresponding cigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1, Therefore to cach RGB image pixel L., =
(18,18 IE]T we add the following quantity:

[P1, P2, Palli Ay, cn Ao, g Ag]

where p; and A; are ith eigenvector and eigenvalue of the 3 x 3 covaranee matrix of RGB pixel
values, respectively, and e is the aforementioned random variable. Each o, 18 drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 ermor rate by over 1%.

Penguins!

int -main() {
int-1i;
int:];
pixel matrix cropped;
pixel matrix flipped;
pixel matrix img;

img = read("penguin.jpg");
for:(1:='0:-1:-<:32: -i=4i+1) - {

for (j =-0;:j:-<32; j=j+1) -{
cropped 1mg¢¢1 1+224,] j+224>>;
e(cropped, "img" + str_of_int(i str_of_int(j), "ijpg");
fllpped ~cropped;
rite(flipped, "img" + str_of_int(i str_of_int(j) + ", "jpg");

}
}

return-0;

Thank You!

