Numnum Language Final Report

Programming Languages and Translators

COMS 4115 W Section 1
Prof. Edwards

December 20, 2017

Sharon Chen syc2138 Tester

Kaustubh Gopal Chiplunkar ke3148 Language Guru
Paul Czopowik pc2550 Manager

David Tofu dat2149 Tester

Art Zuks az2487 System Architect

1. Introduction

2. Language Tutorial
2.1 The Setup
2.2 Code Walkthrough

3. Language Reference Manual
3.1 Lexical Conventions
3.1.1 White space
3.1.2 Comments
3.1.3 Identifiers for Functions and Variables
3.1.4 Keywords:
3.1.5 Constants
3.1.5.1 Integer Constants
3.1.5.2 Floating Point Constants
3.1.5.3 String Constants
3.2 Syntax
3.2.1 Code Blocks
3.2.2 Functions
3.2.3 Control Flow
3.2.3.1 Loops
3.2.3.2 Conditional Statements
3.2.4 Operators
3.2.4.1 Binary Operators
3.2.4.2 Unary Operators
3.2.4.3 Assignment Operators
3.2.5 Operator Precedence
3.2.6 File 10
3.2.7 Matrices
3.2.8 Implicit Type Conversion
3.2.8.1 Assignment Casting
3.2.8.2 Operator Casting
3.3 Standard Matrix Library

4. Project Plan
4.1 Processes
4.2 Style Guide
4.3 Timeline
4.4 Team roles and responsibilities
4.4.1 Art Zuks (az2487)
4.4.2 Kaustubh Chiplunkar (kc3148)

SO O N N

© © ©W W W W =1 -1 =3I =3 ~I -3 =

e e et e e e i e e e e e
W W W WO N R RO O o o O

I i e e e
N g 39 O O ot >

4.4.3 David Tofu (dat2149)

4.4.4 Paul Czopowik (pc2550)

4.4.5 Sharon Chen (syc2138)
4.5 Development Environment
4.6 Project Log:

5. Architectural Design
5.1 Compiler Diagram
5.2 Scanner
5.3 Parser
5.4 Semantic Checking
5.5 Code Generation

6. Test Plan
6.1 Example Test Programs
6.2 Test Suites
6.2.1 Reasoning Behind the Test Cases
6.2.2 Test Automation
6.2.3 Who Did What

7. Lessons Learned
7.1 Art
7.2 Chip
7.3 David
7.4 Paul
7.5 Sharon

8. Appendix
parser.mly
scanner.mll
ast.ml
codegen.ml
numnum.ml
Makefile

17
17
17
17
18

22
22
22
23
23
23

24
24
34
35
35
39

40
40
40
40
40
41

43
43
45
54
56
66
66

1. Introduction

Numnum is a programming language which is based on C and Python languages. It is
designed to be a domain specific matrix and array manipulation language. Numnum differs
in syntax and encapsulates the best of C and Python and some other common languages to
deliver a fun and easier programming experience for a user.

The purpose of the language is to provide a native way to manipulate matrices and arrays.
To make matrix manipulation easy, the language features simple syntax to allow basic
matrix arithmetic, and includes built in functions for matrix element arithmetic.

An example of a program that can be created in Numnum is one that can manipulate
images. For example a program could be written to blur images or remove or adjust color
information. Images are made of numbers arranged in matrices, which are
multi-dimensional arrays of numbers. Because our language offers a native matrix interface
it simplifies implementing libraries that would allow for image manipulation.

2. Language Tutorial

2.1 The Setup

Numnum requires the installation of the OCaml llvm library. Use Ubuntu 16.04 LTS for
ease of use. Then download the following packages.

sudo apt-get install -y ocaml m4 1lvm opam
opam init

opam install 1lvm.3.6 ocamlfind

eval “opam config env

The compiler is called upon by using the numnum.native command and streaming in a file
of .num format.

./numnum.native < hello_world.num

2.2 Code Walkthrough

In this section we will go through a basic code which reads in a colored image and converts
it to black and white.

int main()

{
string path;
string path2;
int i;
int j;
float sum;
float temp;

float wi;

float w2;

float w3;

byte[3][600][400] a;

wl = 0.2126;

w2 = 0.7152;

w3 = 0.0722;

path = "./cat-stripped.ppm";
path2 = "./cat-check-bw.ppm";

Every numnum program must have a main function. Variables are declared first and then
assigned. Arrays are declared with the variables with their type, followed by number of
dimensions each enclosed in square brackets. The strings path and path2 are the locations
of the the image to be written to and from where to read.

read(path, a);

The command read, reads in the values in the file specified by the string path, and reads
them into the variable a. The command always tries to read in data of size of a, so there can
be no out of bound errors.

for (i =0 ; i<400 ; 1i=1+1) {
for (j =0; j<600 ; j=7+1)

sum = 0;

temp = 0;

temp = wl * a[@][J][i];
sum = sum + temp;

temp = w2 * a[1][J][i];

sum = sum + temp;

sum = w3 * a[2][j][1];
sum = sum + temp;

sum = sum/3;

a[e][3][1] = sum;
a[1][3][1] = sum;
a[2][3][1] = sum;
}
}

These two for loops iterate over the image and pickup every pixel. Then we perform the
weighted sum of the RGB values for the pixel to convert it to grayscale. There are many
implicit type conversions which must be understood here.

First, in the line

temp = wl * a[@][j]1[i];

a is an array of bytes, however it is multiplied by a float, hence it is implicitly converted to
a float and their multiplication is assigned to another float temp.

In,

sum = sum / 3;

The 3 is converted to a float again and then assigned to float sum.
In the line,

a[e][j][1] = sum;

Float sumis assigned to a byte array, hence sum is implicitly casted to a byte.

Thus, iterating through the array, we convert the RGB pixels to a grayscale using a
weighted conversion.

write(path2, a);
return 0;

In the end, we write the matrix a back to the path and complete the conversion. The write
function is similar to the read function, in the sense that it will write all of the size of the
array to the specified path.

Also, we return 0, matching with the function return type.

5

Something to watch out for while writing code in numnum are the implicit type
conversions, even if the compiler won’t complain about syntactical errors, you may not
actually mean some of those automatic conversions.

3. Language Reference Manual

3.1 Lexical Conventions

3.1.1 White space

White space is used to separate tokens in the language and is otherwise ignored. The
programmer is free to use space, tab or newline characters to make code more readable.

3.1.2 Comments

The character /* marks the start of a string and the character */ marks its end.

3.1.3 Identifiers for Functions and Variables

An identifier is a sequence of letters and digits and the first character must be alphabetic.
The underscore _ counts as alphabetic. Upper and lower case letters are considered
different.

Declared more formallyas: ['a'-'z"']['a'-"z" 'A'-'Z' '@'-'9" ' ']*

3.1.4 Keywords:

e int e print (int)

e float e printfl (float)

e string e printstrn (string no \n)
e Byte e printstr (string)

e void e printbyte (byte)

e while e printb (bool)

e for e open

o if e write

o elif e dim (# dimensions)

e else e return

3.1.5 Constants

The language contains the following constants:
e integer
e floating point number

e string
e boolean

3.1.5.1 Integer Constants

An integer constant consists of a sequence of digits. The language recognizes decimal
numbers only and does not recognize binary, octal, hexadecimal or other number systems.
Integer constants are signed by default. To represent a negative integer, the minus sign is
used. Leading zeros are ignored.

Example:
int a = 456
int b = -12

3.1.5.2 Floating Point Constants

Floating point constants consist of the integral part in form of a sequence of digits, a period
and a fractional part which is also a sequence of digits. The language recognizes decimal
numbers only and does not recognize binary, octal, hexadecimal or other number systems.
For the integral part, leading zeros are ignored and the number can be signed with a minus
sign.

Example:

float a
float b

456.789
-12.0

3.1.5.3 String Constants

A string constant is a sequence of characters enclosed by double quotes "" and terminated
by a null byte \0 to indicate the end of the string. Strings are not parsed for comments and

The backslash \ 1is used for escaping characters in the string.

Escape Characters:
e \ - Escape Character

e \n - newline Character
e \t - Tab Character
e \\ - Backslash
e \"-Quote
Example:

str name = "John Doe";

str x = "10 \t 20 \"Inch\"";

str example = "example string /* this is not a comment */ \"
still in the string"

3.2 Syntax

The semicolon ; is a statement terminator.

print ("Hello, world!");

3.2.1 Code Blocks
Code blocks are enclosed by curly braces { }

3.2.2 Functions

Function has a return type and has arguments. A function cannot return a matrix but can
return other data types. Matrices can only be passed by reference in a function.

Syntax:

/* Function Declaration */

type name (list of parameters) {
variable declaration list;
statement list;
return statement;

/* Function Call */
name (list of parameters);

Example:

int add (int a, int b) {
int c;
return (a + b);

3.2.3 Control Flow

Control flow is achieved by loops and conditional statements.

3.2.3.1 Loops

There is are two ways to implement loops, a for loop and a while loop:

For Loop Syntax:

Statement list;

for (expression; condition expression; increment expression) {

While Loop Syntax:

while (condition expression) {
Statement list;

3.2.3.2 Conditional Statements

Conditional statements are handled by using if, elif and else.

Syntax:

if (expression) {
expression;

} elif (expression) {
expression;

} else {
expression;

3.2.4 Operators

3.2.4.1 Binary Operators

+ Subtraction of two 32-bit int/ 64-bit floats/8 bit byte. Right side
gets cast to left type.

- Subtraction of two 32-bit int/ 64-bit floats/8 bit byte. Right side
gets cast to left type.

/ Subtraction of two 32-bit int/ 64-bit floats/8 bit byte. Right side
gets cast to left type.

* Subtraction of two 32-bit int/ 64-bit floats/8 bit byte. Right side
gets cast to left type.

== Equality Check

= Inequality Check

> Greater Than Operator

< Less Than Operator

>= Greater Than or Equal Operator
<= Less Than or Equal Operator
&& Logical And

| | Logical Or

3.2.4.2 Unary Operators

- Written before in int/float to make it negative

! Logical Not

3.2.4.3 Assignment Operators

= Assigns the right hand value to the variable on the left

3.2.5 Operator Precedence

10

[11} Highest

= Lowest

3.2.6 File 10

There are two functions open and write that control interaction with files.

int open(string path,*[] matrix_ptr)

Takes in a string to the path of the file and any integer matrix type of any dimension.
Internally will open a file descriptor and attempt to read the maximum number of bytes
that the matrix will be able to store.

int write(string path,*[])

Takes in a string to the path of the file and any integer matrix type of any dimension.
Internally with call linux creat function to write the bytes of the passed in matrix into the
file.

3.2.7 Matrices

Each matrix can have any number of dimensions. Allocation is done in a single contiguous
block of memory.

Declaration:

int[diml][dim2]... mat;
float[diml][dim2]... matl;

11

byte[diml][dim2]... mat2;

3.2.8 Implicit Type Conversion

3.2.8.1 Assignment Casting

Converts the type on the right hand side of a assignment statement to the one it is being
assigned to

type 1 = type 2; // Converts type2 to typel

3.2.8.2 Operator Casting

When binary operations have two different types on each side, numnum casts the type to
the right of the operation into the type to the type of the left of the operation and returns
the type on the left hand side

type_1*type 2; // Converts type_2 to type 1

3.3 Standard Matrix Library

Here are some built-in functions in the matrix library:

print(expression)

Prints the expression as a string to standard output. Accepts strings.

dim(matrix)

Returns an integer of the dimensions of the input expression.

el add(a, b, c)

Element-wise matrix addition. Given matrices a, b, and c, each of the same data type and
dimensions, the value of every element in c is set to be the sum of the element in a and the
element in b, at the corresponding position in the matrix.

12

el sub(a, b, c)

Element-wise matrix subtraction. Given matrices a, b, and c, each of the same data type
and dimensions, the value of every element in c is set to be the difference of the element in
a and the element in b, at the corresponding position in the matrix.

el mul(a, b, c)

Element-wise matrix multiplication. Given matrices a, b, and c, each of the same data type
and dimensions, the value of every element in c is set to be the sum of the element in a and
the element in b, at the corresponding position in the matrix.

el div(a, b, c)

Element-wise matrix division. Given matrices a, b, and c, each of the same data type and
dimensions, the value of every element in c is set to be the quotient of the element in a and
the element in b, at the corresponding position in the matrix.

bc_add(a, b, c)

Broadcasting matrix addition. Given matrices a, b, and c, each of the same data type, a
having dimensions of [1], and b and c having the same dimensions that might not be [1],
the value of every element in c is set to be the sum of that element in a and the element in
b at the corresponding position in the matrix.

bc_sub(a, b, c)

Broadcasting matrix subtraction. Given matrices a, b, and c, each of the same data type, a
having dimensions of [1], and b and c having the same dimensions that might not be [1],
the value of every element in c is set to be the difference of that element in a and the
element in b at the corresponding position in the matrix.

bc_ mul(a, b, c)

Broadcasting matrix multiplication. Given matrices a, b, and c, each of the same data type,
a having dimensions of [1], and b and ¢ having the same dimensions that might not be [1],

13

the value of every element in c is set to be the product of that element in a and the element
in b at the corresponding position in the matrix.

bc_div(a, b, c)

Broadcasting matrix division. Given matrices a, b, and c, each of the same data type, a
having dimensions of [1], and b and c having the same dimensions that might not be [1],
the value of every element in c is set to be the quotient of that element in a and the element
in b at the corresponding position in the matrix.

4. Project Plan

4.1 Processes

For project planning the team relied on a variety of tools to ensure that the project
proceeded smoothly and deliverables were submitted on time. After evaluating a handful of
web-based project management platforms, the manager has chosen to use freedcamp.com.
This was primarily due to its licensing model, ease of use and availability of specific
features such as milestones, subtasks, and scheduling, among others. Using freedcamp the
manager was able to outline all tasks from the requirements and break them out into
separate task groups. These tasks included due dates, priority, assignment to team
members and allowed for progress tracking. In addition, the calendar was used to set up
reminders for deadlines, homeworks and exams. Throughout the project freedcamp would
email the team with progress updates and scheduling reminders.

We also used Google Docs extensively as the main collaboration platform. This was our
primary documentation and collaboration tool so anything we discussed or worked on would
be written in Google Docs. For example, during each meetings a team member would take
meeting notes. This was very useful for review, to see what we agreed upon and for those
that may have missed a meeting.

One of our first goals was to finish the “First three tasks” as outlined in the course. First,
we discussed and assigned team roles, however these changed slightly in the early stages of
the project. Each team member was also required to post their availability for this project
along with basic contact information and a short bio as related to the project. Based on all
of this information the manager was able to establish as weekly meeting schedule.

The team was also tasked to come up with a handful of ideas for our project before our
meeting. Using questions such as “What is the purpose?” or “What are we trying to solve or
accomplish?” helped us to establish goals. During our first few meetings we would discuss
the ideas and try to narrow down the scope of the project. Once we agreed on our main

14

project trajectory we were then able to narrow down the specifications of our language,
which was captured in our team meeting notes.

In order to standardize development and testing and to save time with the setup of the tools
the team used the same VM image as the development platform. The VM is an Ubuntu
16.04 (not 14 as it was mistakenly mentioned during the presentation) with all the required
tools pre-installed. Members of the team would pick up tasks based on previous meetings
and discussions. As development got underway, the team used “Issues” in GitHub to track
items that needed to be worked on. As the project progressed more, we used Slack as a chat
platform to ask questions or discuss issues during development.

4.2 Style Guide

The team did not implement a standard style guide. Development was done using common
styling principles modeled after the style of the Micro-C compiler.

4.3 Timeline

Time Task Details

September 14 First 3 tasks Formed team, Assigned team roles, Scheduled
weekly meetings, came up with language idea,
created project plan.

September 24 Project Proposal | Deliverable

October 10 Development Setup Git repo, setup and share VM for VMware
environment and VirtualBox

October 22-29 Development Initial parser, floats, changed Python def/func to

C style function declaration, print functions,
Menbhir test, test script, strings, hello world.

November 8 Deliverable Hello World

November 5 - 29 Development Work on AST, shift reduce errors, arrays, lookup
tables, matrix declaration with any type, llvm
test, parser complete, additional string testing

November 29 - Development Elif added, semantic checks, debugging
December 7

December 13 - 15 | Development Reading binary data into arrays, added Byte
datatype, debugging

December 15 - 16 | Development Progress on demo, image manipulation

15

December 17 Development

Casting and conversion, matrix input and output,
more work on elif and else, work on demo for
image manipulation (color, blur, reflections, flips,
etc), demo of OCR

December 18 Development

Matrix element-wise operations - multiplication,
addition, subtraction, division, including ints and
floats, edge detection demo (image)

December 19 Development

Matrix broadcasting operations - multiplication,
addition, subtraction, division, including ints and
floats

December 20 Development

Project cleanup and final testing

4.4 Team roles and responsibilities

4.4.1 Art Zuks (az2487)

Systems Architect - responsible for compiler architecture, lead developer

4.4.2 Kaustubh Chiplunkar (kc3148)

Language Guru - responsible for language design

4.4.3 David Tofu (dat2149)

Tester - responsible for writing test suites

4.4.4 Paul Czopowik (pc2550)

Manager - responsible for project management, scheduling, deliverables, development

environment setup, assisting where needed

4.4.5 Sharon Chen (syc2138)

Tester - responsible for writing test suites and automation, implementing language

features, coordinating team efforts

4.5 Development Environment

The development environment was based on using Git for a source repository and a Linux
Ubuntu 16.04 LTS Virtual Machine in VMware and VirtualBox format. The VM included
all development tools required for the project. The tools in the VM included various

16

compilers and languages including GCC and G++, Python, Ocaml suite with and related
Ocaml tools like ocamlyacc and ocamllex, git, menhir, vim, and LLVM.

4.6 Project Log:

Below is the commit log from Git. Team members often collaborated in pairs and submitted

as one.
90579da Sharon Wed Dec 20 16:32:41 2017 make sure every test
corresponds to an output

eldlcod Sharon Wed Dec 20 15:44:14 2017 cleaned up test script
again

c43c2e2 Sharon Wed Dec 20 15:34:10 2017 reorganized tester
python script

2d52a97 Sharon Wed Dec 20 15:15:14 2017 fixed semant: added in
one right parenthesis

11fdefs Sharon Wed Dec 20 15:12:35 2017 Multiplication (#31)
818088 Sharon Tue Dec 19 11:32:25 2017 Merge pull request #30
from pc2550/multiplication

823f0a9 Sharon Tue Dec 19 11:31:50 2017 Merge branch 'master’
into multiplication

fdddb9od Sharon Tue Dec 19 11:25:21 2017 beginning to add
element-wise logical operators

bbcf303 Sharon Tue Dec 19 10:27:53 2017 added codegen and
semant for el add

6F562b0 Sharon Tue Dec 19 10:07:48 2017 cleaned up codegen for
el mul

52fc134 Sharon Tue Dec 19 01:10:07 2017 codegen for float

el mul

cefac25 Sharon Tue Dec 19 00:57:12 2017 done with el_mul
codegen

1505a8d Art Zuks Mon Dec 18 22:00:11 2017 updated semant

f03a361 Art Zuks Mon Dec 18 21:42:36 2017 added demos

b983b38 Sharon Mon Dec 18 18:21:23 2017 tried adding matrix
multiplication

6534175 Art Zuks Mon Dec 18 16:09:54 2017 added edge detection
demo

9cd72fc Sharon Mon Dec 18 00:04:15 2017 finished semant for

el mul

ed559eb artzuks Sun Dec 17 22:42:11 2017 Merge pull request #29
from pc2550/demo2

a20d297 Art Zuks Sun Dec 17 22:41:15 2017 ocr working

e90faad artzuks Sun Dec 17 19:49:15 2017 Merge pull request #28

17

from pc2550/demo2

422c5f8 Art Zuks Sun Dec 17 19:48:15 2017
095c5b9 Sharon Sun Dec 17 18:06:03 2017
from pc2550/elif

844207c Sharon Sun Dec 17 17:53:07 2017
no else

91523c2 Sharon Sun Dec 17 15:44:54 2017
of https://github.com/pc2550/numnum into elif
100d4bc Sharon Sun Dec 17 15:43:12 2017
of https://github.com/pc2550/numnum into elif
b7c6bf2 Sharon Sun Dec 17 15:41:44 2017
work without else

62955cb Sharon Sun Dec 17 15:30:48 2017
93d6f3a Sharon Sun Dec 17 13:57:25 2017
from pc2550/elif

6912002 Sharon Sun Dec 17 13:56:04 2017
into elif

dee5df1 Sharon Sun Dec 17 13:51:24 2017
for elif

0157fa6 artzuks Sun Dec 17 13:16:33 2017
from pc2550/intcast

5dc46d6 Art Zuks Sun Dec 17 13:16:04 2017
abc42a8 Art Zuks Sun Dec 17 13:14:17 2017
type in binop

a9a01d6 Art Zuks Sun Dec 17 12:45:48 2017
types

0733b44 artzuks Sat Dec 16 23:01:43 2017
from pc2550/demol

811105 Art Zuks Sat Dec 16 18:13:32 2017
43539be Art Zuks Sat Dec 16 17:12:15 2017
809708 Art Zuks Fri Dec 15 23:03:15 2017
bytes from files

61d68ce artzuks Fri Dec 15 22:28:57 2017
dd83392 artzuks Fri Dec 15 22:15:55 2017
from pc2550/string tests

fle592d artzuks Fri Dec 15 22:15:23 2017
from pc2550/open

4ab251b artzuks Fri Dec 15 22:15:17 2017
into open

2b21435 artzuks Fri Dec 15 22:13:50 2017
from pc2550/chars

ef4dide Art Zuks Fri Dec 15 22:12:54 2017
256aa2c Art Zuks Wed Dec 13 23:11:09 2017

18

dog demo
Merge pull request #27

fixed elif parser for
Merge branch 'master'’
Merge branch 'master'’
modifying codegen to

testing elif more
Merge pull request #26

Merge branch 'master’
add semantic checking
Merge pull request #25

added matrix out
conversion to lefthand

casting from different
Merge pull request #24
delete color from image
some progress on demo

reading and adding 2

fixed
Merge

warnings (#23)
pull request #20

Merge pull request #21

Merge branch 'master’

Merge pull request #22

added bytes
removed 11 file

9dee9dc Art Zuks Wed Dec
ints into an array

13 23:09:14 2017 working reading binary

7 23:09:16 2017 begin to read bytes from file
6 20:03:59 2017 add tests for elif, hello

€90c109 Art Zuks Thu Dec

a5bf2e3 Sharon Wed Dec

world, and variables in main

ae39%eea Sharon Wed Dec 6 19:07:24
working with either no else or else stmt
de55a2a Sharon Wed Dec 6 18:55:57
base case

fa8d868 Sharon Wed Dec 6 18:47:52
case else statement

0067404 Art Zuks Tue Dec 5 19:20:35
elif"

b43c745 artzuks Tue Dec 5 16:32:08
pc2550/matrix

b559cf9 artzuks Tue Dec 5 16:31:55
pc2550/dim_and_shape_of_matrix

29181ae artzuks Tue Dec 5 16:31:45
dim_and_shape_of_matrix

1576b49 DavidTofu Mon Dec 4 17:30:58
c33b30e DavidTofu Mon Dec 4 17:27:56

2017 elif codegen base case

2017 elif codegen works with else
2017 modify elif codegen for base
2017 Revert "add ast testers for
2017 Merge pull request #18 from
2017 Merge pull request #17 from
2017 Merge branch 'matrix' into

2017 undo unnecssary changes
2017 Moved out our own tests,

modified testall.sh to run on our tests by default, and on all tests if
needed

0a31938 Sharon Sun Dec 3 13:58:08 2017 Merge pull request #19 from
pc2550/elif

£d98fc8 Sharon Sun Dec 3 13:54:17 2017 add ast testers for elif
3121557 Art Zuks Sun Dec 3 13:05:38 2017 no more warnings

33bc18d DavidTofu Fri Dec 1 11:23:57 2017 Fix a warning

1lbe20ofe DavidTofu Fri Dec 1 11:03:21 2017 Dim() function done

07204c8 DavidTofu Fri Dec 1 10:58:11 2017 Pretty printer for matrix
69a030f Sharon Wed Nov 29 21:16:03 2017 fixed parser elif for
testing codegen

5a301b7 Sharon Wed Nov 29 15:31:56 2017 Pretty print elif,
empty semantic check

3de3389 Sharon Wed Nov 29 14:30:57 2017 Merge branch 'master'’
of https://github.com/pc2550/numnum into elif

9d76401 Sharon Wed Nov 29 14:28:09 2017 Merge pull request #16
from pc2550/string_tests

6855317 Sharon Wed Nov 29 14:25:01 2017 changed .mc to .num for
running tests

262bc28 Sharon Wed Nov 29 14:24:32 2017 checked how the testers
failed

361f86b Sharon Wed Nov 29 13:40:32 2017 rename extensions from

19

.mc to .num

bc66edo Sharon Wed Nov 29 13:
from pc2550/string tests

dcedfec DavidTofu Wed Nov 29 12:
c4ce06f Art Zuks Mon Nov 27 21:
2727FF9 Art Zuks Sun Nov 26 13:
707ad40 Art Zuks Sun Nov 26 13:
7936951 Sharon Tue Nov 21 20:
from pc2550/master

f3dcf32 Sharon Tue Nov 21 20:
from pc2550/string tests

6967e7d Art Zuks Tue Nov 21 19:
1f5e754 Art Zuks Sun Nov 19 15:
complete

e791c74 Art Zuks Sun Nov 12 12:
lookup table to get dims for matrix
069c26e Art Zuks Sun Nov 12 12
with any type

a2e39a4 Art Zuks Sun Nov 5 17:
68af421 Art Zuks Sun Nov 5 17:
6a4990c Art Zuks Sun Nov 5 14:
a5afcbd Art Zuks Sun Nov 5 11:
418ac5e Art Zuks Sun Nov 5 11:
06d4d19 Sharon Thu Nov 2 12:
Qa7b71f Sharon Tue Oct 31 21
from pc2550/strings

22¢969e Art Zuks Sun Oct 29 15:
b43374c kaustubh Sun Oct 29 15:
6ad8793 kaustubh Sun Oct 29 15:
d9263cb kaustubh Sun Oct 29 14:
acb35a3 kaustubh Sun Oct 29 14:
8e64927 artzuks Sun Oct 29 13:
from pc2550/test _script

€20796b kaustubh Sun Oct 29 13:
9954b35 artzuks Sun Oct 29 13:
from pc2550/floats

8cfb183 kaustubh Sun Oct 29 13:
828ff53 Art Zuks Sat Oct 28 16:
floats

0c52dd9 Art Zuks Sat Oct 28 12:
added some tests

43733cd Art Zuks Sat Oct 28 11:

and fixed tests

:21

57:
12:
49:
46:
29:
17:
132

20

31:

55:
12:
50:
00:
32:

28:

15:
01:

49:

43:
29:
27:
53:
50:
38:

29:
17:

15:
06:

24

03:

39

48
55
58
12
28

12

23
57

54

:19

31
53
59
59
37
59
:12

11
59
45
45
17
28

56
13

49
14

31

10

2017
2017
2017
2017
2017
2017
2017

2017
2017

2017

2017

Merge pull request #15
Some more string tests
took out foo

parser done

llvm tests

Merge pull request #14
Merge pull request #13

static arrays are done
access might be

store ast type in

matrix deceleration

2017 working ast
2017 fixed shift reduce

2017

shift reduce on [

2017 formated files

2017
2017
2017

2017
2017
2017
2017
2017
2017

2017
2017

2017
2017

2017

2017

removed microx from repo
added string testers

Merge pull request #4

hello world

a

2

a

strings

Merge pull request #3

test script
Merge pull request #1

Menhir Test for parser
added operations for

make print function and

took out func for now

c58386b Art Zuks Sun Oct 22 13:55:12 2017 floats done

0952fa0 Art Zuks Sun Oct 22 13:26:13 2017 float stuff
4e27244 Art Zuks Sun Oct 22 12:35:24 2017 initial parser
bd19343 Paul Czopowik Mon Oct 9 19:10:39 2017 adding microc-1lvm
3ef6f85 Pawet Czopowik Sun Oct 8 12:43:49 2017 Initial commit

5. Architectural Design

5.1 Compiler Diagram

Syntax

‘. Abstract ‘
Tree

4

‘ Semantic ‘

Checker

'

Code .
Generator K i

|

5.2 Scanner

Worked on by Art and Chip.

The scanner is responsible for taking in the input of a program and generating the tokens
which will be read in the parser. During this phase, all of the white spaces are taken out

and tokens are generated for anything that has syntactic meaning in the language. This
includes all of the variable names, any braces or brackets as well as the string,integer and

21

https://www.draw.io/#G1q-iXzfsMWtLDE2Qe06vbCTs9yMCEcR2K

float literals. Everything that is within a comment block (uses regular c-style syntax /**/)
is discarded at this step.

5.3 Parser

Matrix and types worked on by Art and Chip.
Elif flow control worked on by Art and Sharon.
Matrix arithmetic worked on by Sharon.

The parsers job is to receive the stream of tokens out of the scanner, and construct an
abstract syntax tree out of the stream. Most of the overall design remains the same as
MicroC compiler. The program is a series of declarations which can be variable declarations
(globals) or function declarations. Function declarations are as you would expect in C with
the additional caveat that variable declarations and statements must appear separately,
one before the other.

5.4 Semantic Checking

Team wide effort.

Matrix and type checking worked on by Art and Chip.

Elif, Matrix Arithmetic done by Sharon.

Element-wise matrix multiplication done by Sharon and David.

The semantic checker is responsible for walking through the AST that was generated by the
parser and make sure that the input file isn’t violating any syntactic rules. Where the
parser was able to complain when it found a missing bracket or brace, the semantic checker
is able to tell the user when they are doing something not supported by the user such as
assigning a string literal into a int type. It is also responsible for a table of variable names
and functions (symbol table) so that it can complain if a program is trying to access an
undeclared variable or function. It also contains a list of all predefined functions in the
language and will complain when the parameters don’t match in a function call.

5.5 Code Generation

Matrix access/assignment and types by Chip and Art.

File I0 and implicit type casting by Art.

Elif control flow and matrix arithmetic by Sharon.
Element-wise matrix multiplication done by Sharon and David.

The code generator walks the freshly checked AST from the semantic checker and tries to
translate the nodes into llvm. It is responsible for making sure that the generated llvm code
is valid. For instance when doing binary operations between two unevenly sized numbers
(32 bit integer and 64 bit float), it makes sure to convert the left hand side to the proper size

22

before doing the binary operation. Also for file IO, it makes sure to check the type of matrix
to know how many bytes to read from a file. When processing E1if statements, the code
generator actually creates new AST nodes that it processes to make the condition
statements properly.

6. Test Plan

6.1 Example Test Programs

This section starts off with three representative Numnum programs, along with their
generated LLVM code. Right below each program is the expected/actual output of the
programs.

This first program checks to see if the first elif condition that evaluates to true is run and
the later elif statements are skipped.

Input: tests/test-elif17.num

1 int cond(bool b)

2 {

3 int x;

4 if (false)

5 X = 42;

6 elif (b) /* because this is an if statement whose condition evaluates

to true, the below elif statement is skipped */

7 X = 95;
elif (b)

9 X = 423;
10 elif (b)
11 X = 500;
12 else
13 X = 600;
14 return Xx;
15 }

16
17 int main()
18 {

19 print(cond(true));
20 return 0;
21 }

LLVM code: tests/test-elif17.11
23

1 ; ModuleID = 'NumNum'

2

3 @errno = available externally global i32 ©

4 @fmt = private unnamed_addr constant [4 x i8] c"%d\OA\00"

5 @fmt.1 = private unnamed_addr constant [4 x i8] c"%x\0A\e0"
6 @fmt.2 = private unnamed_addr constant [4 x i8] c"%f\@A\e0"
7 @fmt.3 = private unnamed_addr constant [4 x i8] c"%s\0A\00"
8 @fmt.4 = private unnamed addr constant [3 x i8] c"%s\ee"

9 @fmt.5 = private unnamed_addr constant [4 x i8] c"%d\@A\00"
10 @fmt.6 = private unnamed_addr constant [4 x i8] c"%x\0@A\00"
11 @fmt.7 = private unnamed_addr constant [4 x i8] c"%f\0A\00"
12 @fmt.8 = private unnamed_addr constant [4 x i8] c"%s\@A\00"
13 @fmt.9 = private unnamed_addr constant [3 x i8] c"%s\ee"

14

15 declare i32 @printf(i8*, ...)

16

17 declare i32 @open(i8*, i32, ...)

18

19 declare i32 @read(i32, i32*, i32, ...)
20

21 declare i32 @creat(i8*, i32, ...)

22

23 declare i32 @write(i32, i8*, i32, ...)
24

25 declare i32 @close(i32, ...)

26

27 define i32 @main() {

28 entry:

29 %cond_result = call i32 @cond(il true)

30 %printf = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4
X i8]

31 ret i32 0

32 }

33

34 define i32 @cond(il %b) {

35 entry:

36 %bl = alloca il

37 store il %b, i1* %bl

38 %x = alloca i32

39 br il false, label %then, label %else

40

41 merge: ; preds = %merge3,

24

%»then

42 %x14 = load 132, i32* %x
43 ret i32 %x14

44

45 then:

46 store i32 42, i32* ¥x

47 br label %merge

48

49 else:

50 %b2 = load i1, i1* %b1l

51 br il %b2, label %then4, label %else5

52
53 merge3:
%»then4d
54 br label %merge
55
56 then4:
57 store i32 95, i32* ¥x
58 br label %merge3
59
60 else5:
61 %b6 = load il, il* %bil

62 br il %b6, label %then8, label %else9

63
64 merge7:
%then8
65 br label %merge3
66
67 then8:
68 store i32 423, i32* %x
69 br label %merge?7
70
71 else9:
72 %ble = load il, il1* %b1l

73 br il %bl10, label %thenl2, label %elsel3

74
75 mergell:
%then12
76 br label %merge7
77
78 thenl2:
79 store i32 500, i32* %x

; preds

; preds

; preds

; preds

; preds

; preds

; preds

; preds

; preds

; preds =

sentry

sentry

%merge7,

%else

%else

%mergell,

%»elseb

%»elseb

%»elsel3,

%»else9

25

80 br label Z%mergell

81

82 elsel3: ; preds = %else9
83 store i32 600, i32* %x

84 br label Z%mergell

85 }

Output: tests/test-elif17.out

95

The results of the elif test above confirmed that the first elif statement for which the
condition is satisfied is the statement in which x is defined, and not any other statements.

The following tester is more comprehensive than the above test. This tester only passed
after our language was capable of float matrix initialization, matrix assignment, matrix
access, printing of floats, and the four different operations of element-wise arithmetic of
matrices.

26

Input: tests/test-matrix6.num

1

2 int main(){

3 float [2][1] a;

4 float [2][1] b;

5 float [2][1] c;

6

7 al[e][@o] = 2.0;

8 al[1][@0] = 4.0;

9 b[e][e] = 3.0;
10 b[1][@] = 3.0;
11 c[o][e] = 1.0;
12 c[1][e] = 1.0;
13
14 el sub(a, b, c);
15
16 printfl(c[o][0]);
17 printfl(c[1][0]);
18

19 el add(a, b, c);
20

21 printfl(c[@][0]);
22 printfl(c[1][@]);
23

24 el mul(a, b, c);
25

26 printfl(c[o][0]);
27 printfl(c[1][0]);
28

29 el div(a, b, c);
30

31 printfl(c[@][0]);
32 printfl(c[1][@]);
33

34 return 0;

35 }

LLVM code: tests/test-matrix6.11

1 ; Modul
2
3 @errno
4 @fmt =
5 @fmt.1
6 @fmt.2
7 @fmt.3
8 @fmt.4
9
10 declare
11
12 declare
13
14 declare
15
16 declare
17
18 declare
19
20 declare
21
22 define
23 entry:
24 %a =
25 %b =
26 %C =
27 %tmp
28 store
29 Z%tmpl
30 store
31 %tmp2
32 store
33 %tmp3
34 store
35 %tmp4
36 store
37 %tmp5
38 store
39 %tmp6
40 %tmp7
41 %tmp8
42 %tmp9

eID = 'NumNum'

available_externally global i32 ©
private unnamed_addr constant [4 x i8] c"%d\OA\00"

= private unnamed_addr constant [4 x 18] c"%x\@A\0Q"
= private unnamed_addr constant [4 x i8] c"%f\0A\00"
= private unnamed_addr constant [4 x 18] c"%s\@A\0Q"
= private unnamed_addr constant [3 x i8] c"%s\00"

i32 @printf(i8*, 2)

i32 @open(i8*, i32,)

i32 @read(i32, i32*, i32,)

i32 @creat(i8*, i32,)

i32 @write(i32, i8*, i32, ...)

i32 @close(i32,
i32 @main() {

alloca [2 x double]

alloca [2 x double]

alloca [2 x double]

= getelementptr [2 x double], [2 x double]* %a, 132 @0, 132 ©
double 2.000000e+00, double* Z%tmp

= getelementptr [2 x double], [2 X
double 4.000000e+00, double* %tmpl
= getelementptr [2 x double], [2 X
double 3.000000e+00, double* %tmp2
= getelementptr [2 x double], [2 X
double 3.000000e+00, double* %tmp3
= getelementptr [2 x double], [2 X
double 1.000000e+00, double* %tmp4
= getelementptr [2 x double], [2 X
double 1.000000e+00, double* %tmp5
getelementptr [2 x double], [2 X
load double, double* %tmp6

getelementptr [2 x double],
load double, double* %tmp8

double]* %a, i32 0, i32 1

double]* %b, 132 i32

double]* %b, 132 i32

double]* %c, i32 i32

double]* %c, i32 i32

= double]* %a, 132 i32

i32 i32

[2 x double]* %b,

28

43
44
45
46
47
48
49
50
51
52
53
54
55
x 18]
56
57
58

([4 x

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

([4 x

76
77
78

([4 x

79
80

%tmple = fsub double %tmp7, %tmp9
%tmpll = getelementptr [2 Xx double],
store double %tmpl@, double* %tmpll

%tmpl2 = getelementptr [2 Xx double],
%tmpl3 = load double, double* %tmpl2
%tmpld = getelementptr [2 Xx double],
%tmpl5 = load double, double* %tmpl4
%tmplé = fsub double %tmpl3, %tmpl5

%tmpl7 = getelementptr [2 x double],
store double %tmpl6, double* %tmpl7

%tmpl8 = getelementptr [2 x double],
%tmpl9 = load double, double* %tmpl8
%printf = call i32 (i8*,

%tmp20 = getelementptr [2 x double],
%tmp21 = load double, double* %tmp20
%printf22 = call i32 (i8*,

i

%tmp23 = getelementptr [2 x double],
%tmp24 = load double, double* %tmp23
%tmp25 = getelementptr [2 x double],
%tmp26 = load double, double* %tmp25
%tmp27 = fadd double %tmp24, %tmp26

%tmp28 = getelementptr [2 Xx double],

store double %tmp27, double* %tmp28

%tmp29 = getelementptr [2 Xx double],
%tmp30 = load double, double* %tmp29
%tmp31l = getelementptr [2 Xx double],
%tmp32 = load double, double* %tmp31
%tmp33 = fadd double %tmp30, %tmp32

%tmp34 = getelementptr [2 x double],
store double %tmp33, double* %tmp34

%tmp35 = getelementptr [2 x double],
%tmp36 = load double, double* %tmp35
%printf37 = call i32 (i8*,

i

%tmp38 = getelementptr [2 x double],
%tmp39 = load double, double* %tmp38
%printf40 = call i32 (i8*,

i

%tmp4l = getelementptr [2 x double],
%tmp42 = load double, double* %tmp4dl

i32 o

N
X

double]* %c, i32 9,

i32 1

N
X

double]* %a, i32 9,

i32 1

N
X

double]* %b, i32 o,

[2 i32 1

X

double]* %c, i32 9,

[2 x double]* %c, i32 @0, i32 ©

.) @printf(i8* getelementptr inbounds ([4

[2 x double]* %c, i32 @, i32 1

.) @printf(i8* getelementptr inbounds

[2 x double]* %a, i32 @, i32 ©

i32 o

X

[2 x double]* %b, i32 o,

double]* %c, i32 @, i32 o

i32 1

N
s

double]* %a, i32 9,

i32 1

N
s

double]* %b, i32 o,

iz32 1

X

[2 x double]* %c, i32 @,

[2 i32 o

X

double]* %c, i32 0,

.) @printf(i8* getelementptr inbounds

[2 x double]* %c, i32 @, i32 1

.) @printf(i8* getelementptr inbounds

[2 x double]* %a, i32 @, i32 ©

29

81 %tmp43 = getelementptr [2 x double], [2 x double]* %b, 132 @, 132 ©
82 %»tmp44 = load double, double* %tmp43

83 %tmp45 = fmul double %tmp42, %tmpd4l

84 %tmpd6 = getelementptr [2 x double], [2 x double]* %c, i32 ©, i32 @
85 store double %tmp45, double* %tmp46

86 %tmpd7 = getelementptr [2 x double], [2 x double]* %a, i32 0, i32 1
87 %tmp48 = load double, double* %tmp47

88 %tmp49 = getelementptr [2 x double], [2 x double]* %b, i32 @0, i32 1
89 %tmp50 = load double, double* %tmp49

90 %tmp51 = fmul double %tmp48, %tmp50

91 %tmp52 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 1
92 store double %tmp51, double* %tmp52

93 %tmp53 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 ©
94 %tmp54 = load double, double* %tmp53

95 %printf55 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x i

96 %tmp56 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 1
97 %tmp57 = load double, double* %tmp56

98 %printf58 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x1

99 %tmp59 = getelementptr [2 x double], [2 x double]* %a, i32 @, i32 ©
100 %tmp60 = load double, double* %tmp59

101 %tmp6l = getelementptr [2 x double], [2 x double]* %b, i32 @, i32 ©
102 %tmp62 = load double, double* %tmp61l

103 %tmp63 = fdiv double %tmp60, %tmp62

104 %tmp64 = getelementptr [2 x double], [2 x double]* %c, i32 9, i32 @
105 store double %tmp63, double* %tmp64d

106 %tmp65 = getelementptr [2 x double], [2 x double]* %a, i32 @0, i32 1
107 %tmp66 = load double, double* %tmp65

108 %tmp67 = getelementptr [2 x double], [2 x double]* %b, i32 @, i32 1
109 %tmp68 = load double, double* %tmp67

116 %tmp69 = fdiv double %tmp66, %tmp68

111 %tmp70 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 1
112 store double %tmp69, double* %tmp70

113 %tmp71 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 ©
114 %tmp72 = load double, double* %tmp71

115 %printf73 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x1

116 %tmp74 = getelementptr [2 x double], [2 x double]* %c, i32 @, i32 1
117 %tmp75 = load double, double* %tmp74

118 %printf76 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x i

30

119 ret i32 ©
120 }

Output: tests/test-matrix6.out

1.000000
1.000000
-1.000000
. 000000
.000000
. 000000
.000000
. 000000
6.000000
12.000000
0.666667
1.333333

=

N v un

The next test was one of the earliests tests written. It was an extension of a Micro-C test,
which allowed us to check that our new string type could indeed be a global variable.

Input: tests/test-castl.num

1 int main()

2 {

byte a;

byte c;

int b;

b = 3;

a = b;

c = 5;
printbyte(a);
10 printbyte(c);
11 return 9;
12 }

W 00 N O VT b W

31

LLVM code: tests/test-cast1.1l

1 ; ModuleID = 'NumNum'
2
3 @errno = available_externally global i32 ©
4 @fmt = private unnamed_addr constant [4 x i8] c"%d\©A\00"
5 @fmt.1 = private unnamed_addr constant [4 x i8] c"%x\0A\00"
6 @fmt.2 = private unnamed_addr constant [4 x i8] c"%f\GA\e0"
7 @fmt.3 = private unnamed_addr constant [4 x i8] c"%s\@A\@0"
8 @fmt.4 = private unnamed_addr constant [3 x i8] c"%s\ee"
9
10 declare i32 @printf(i8*, ...)
11
12 declare i32 @open(i8*, i32, ...)
13
14 declare i32 @read(i32, i32*, i32, ...)
15
16 declare i32 @creat(i8*, i32, ...)
17
18 declare i32 @write(i32, i8*, i32, ...)
19
20 declare i32 @close(i32, ...)
21
22 define i32 @main() {
23 entry:
24 %a = alloca i8
25 %c = alloca i8
26 %b = alloca 132
27 store i32 3, i32* %b
28 %bl = load i32, i32* %b
29 %conv = trunc i32 %bl to i8
30 store i8 %conv, i8* %a
31 store i8 5, i8* %c
32 %a2 = load i8, i8* %a
33 %printf = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4
X i8]
34 %c3 = load i8, i8* ¥%c
35 %printf4 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4
x i8
36 ret i32 o
37 }

32

Output: tests/fail-globall.err

Fatal error: exception Failure("illegal void global a")

6.2 Test Suites

For each new feature we implemented, we created multiple test programs. Here are
possible program extensions and what they signify:

1. .num: the source language program which may be good or faulty
2. .out: the expected printed output of a Numnum program
3. .err: the expected error message of a faulty Numnum program

These test cases were placed into test suites. There are four large test suites for our
translator, each of which contains tests for various Numnum language features:

menhir_tests: preliminary tests for checking the abstract syntax tree

old_tests: older tests that retained from the Micro-C test suite

tests: tests specifically for the Numnum language

future_tests: a directory of tests for future use, tests for future Numnum feature

L

implementations

Now, we will explore the details of the main test suite, tests. First off, it contains tests for
each of the following language features that we implemented:

1. Types
o Integers
o Floats
o Booleans
o Bytes
o Strings

2. Variables
o Assignment
o Scope
3. Control Flow
o For and while loops
o If, Elif, Else, and Else if

4. Matrices
o Assignment
o Access

o Arithmetic operations

33

Finally, this test suite also contains the tests for our extensive image processing and optical
character recognition demonstrations. As input the image manipulation programs, ppm
files are also in the test suite.

6.2.1 Reasoning Behind the Test Cases

We tested throughout the development of the language, across all stages of the compiler
pipeline. There were tests specifically written for each stage independent of other stages of
the pipeline, i.e. tests for the codegen, tests for the semantic checker, tests for the AST,
tests for the scanner, and tests for the parser. The parts that were implemented first were
the ones that were tested first. In addition, we took advantage of the fact that by passing in
the different compiler flags available, we were also able to test the ast pretty-printing
without interfering with the other stages.

Our approach to testing involved thinking about edge cases and ensuring that everything
worked as expected.

6.2.2 Test Automation

Because of our detail-oriented approach, we ended up writing numerous tests for even small
features. There were too many test programs for each feature that we wanted to test, so we
resorted to test automation. We now have two python scripts for automatic testing:

1. tester.py: A python script was written and executed to run all the tests for specific
features. Every execution of the script resulted in long and detailed messages
printed on the console, which displayed the code that was run, the output of the
code, and the expected output of the code.

2. demo-tester.py: A second python script was written for testing demos.

tester.py

1 from subprocess import call

2 import glob

3 import sys

4 import os, errno

5

6 "n

7 Sharon Chen

8 December 20, 2017

9 tester.py

10 This program tests numnum features that have tests in the tests
directory.

11

12 usage: python tester.py <feature> <show code>

13 "

14

34

15

16 feature = sys.argv[1]

17 show_code = sys.argv[2].lower() == "true"

18

19

20 def main():

21

22 test_sources = glob.glob("tests/*" + feature + "*")
23 try:

24 os.makedirs("tests/" + feature)

25 except OSError as e:

26 if e.errno != errno.EEXIST:

27 raise

28

29 tests = [test.split(".")[0].split("/")[1] for test in test_sources
if ".num" in test]

30 tests.sort()

31 want_passes = []

32 want_fails = []

33 for test in tests:

34 if "test" in test:

35 want_passes.append("tests/" + test)

36 elif "fail":

37 want_fails.append("tests/" + test)

38

39 print "============ssssossosoosoooooomoomoooooosc
40 print "We are now testing this feature: " + feature
41 print M----- o "
42

43

44 print "=="
45 print "Here are the tests that should be passing: "
46 print M-------mm e "
47 print want_passes

48

49 for test in want_passes:

50 try:

51 run_test(test, True)

52 except:

53 continue

54

55 print "s===========ssssossosoossoosoomoosoooooosc

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

def

print "Here are the tests that should be failing:
print M----mmmm o
print want_fails

for test in want_fails:
try:
run_test(test, False)
except:
continue

run_test(test, want _pass):

"""Run this one test, which either should pass or fail."""
pr\int n n
print test

print

if show_code:
print "Here is the code:
call(["cat", test + ".num"])

in_f = open(test + ".num", "r")

out_f = open(test + ".11", "w")
call(["./numnum"], stdin=in_f, stdout=out_f)
print ""

print "Running: + test + ".num"
call(["11i", test + ".11"])

print ""

print "Expected output: " + test + ".out"
if want_pass:
ext = ".out"
else:
ext = ".err"
call(["cat", test + ext])
print ""
print "End of test for " + test

in_f.close()
out_f.close()

36

98 os.remove(test + ".11")
99
100 main()

Representative Example Snippet of Output:

["tests/test-elifl', 'tests/test-elifl3', 'tests/test-elifil4d’,
"tests/test-elifl6e', 'tests/test-elifl7', 'tests/test-elif2',
"tests/test-elif3', 'tests/test-elif4', 'tests/test-elif6’,
"tests/test-elif8']

tests/test-elif3

Running: tests/test-elif3.num
42
17

Expected output: tests/test-elif3.out
42
17

End of test for tests/test-elif3

["tests/fail-elifl', 'tests/fail-elif2', 'tests/fail-elif3']

demo_tester.py

37

1 import sys

2 from subprocess import call

3

4 vn

5 usage: python demo-tester.py <effect>

6 "n

7 filepath = 'cat.ppm’

8 output = open("cat-stripped.ppm","w")

9 fileFormat = ""
10 dims = ""
11 maxVal = ""
12 with open(filepath) as fp:
13 fileFormat = fp.readline()
14 dims = fp.readline()
15 maxVal = fp.readline()
16 line = fp.readline()
17 while line:
18 output.write(line)
19 line = fp.readline()
20 effect = sys.argv[1]
21 call(['sh', './testall.sh', './tests/demo-' + effect + '.num'])
22 with open('cat-check-' + effect + '.ppm', 'r') as original: data =

original.read()
23 with open('cat-check-' + effect + '.ppm', 'w') as modified:
modified.write(fileFormat + dims + maxVal + data)

24

6.2.3 Who Did What

Sharon kicked off the creation of the test suite. After that, the work on testing began to
become more based on who was developing what parts of the language, so everyone was
involved in creating the extensive test suite. Sharon, David, Art, Chip, and Paul all wrote
varying numbers of tests, depending on how many features they implemented in the

language and how rigorous and detail-oriented they were in their language implementation
approach. Eventually, Art and Chip created and tested demos by writing up several specific
scripts in Numnum, python, and C++. Finally, Sharon created the ultimate automation and

organization of the test suite for both the feature test cases and the demo tests.

38

7. Lessons Learned

7.1 Art

Some main takeaways from the project is OCaml and LLVM IR code. Even though I had a
slow start with OCaml, it eventually beat me into submission and once stockholm syndrome
kicked in, I really began to like the language. It lead to me finding out one of my
ex-colleagues had written a OCaml compiler which omits javascript called Bucklescript.
Seeing the typing problems that plague web development it now seems very natural that
OCaml would prevent you from making some really silly mistakes. Before starting the
project I was slightly familiar with LLVM and clang but this has certainly given me a new
appreciation for the IR. It was very interesting being able to code in C++, generate llvm ir
and linking it with our code. The after seeing the power of infinite registers, I hope to never
have to see assembly code ever again.

7.2 Chip

Writing a compiler in a completely unknown language is a daunting task. OCaml definitely
has a steep learning curve. The biggest takeaway for me was the understanding this project
gave me about the low level workings of modern day compilers, from memory allocation to
stack function calls ete. This helped me in uncovering some bugs in one of my other
projects, which I never would have if I didn't know what was going on under the C compiler.
My advice for future students is to peer code at least once a week. Peer coding keeps the
errors down and helps in keeping everyone on the same page.

7.3 David

What I learnt the most about from this project is probably Ocaml. I have never programmed
in a functional programming language before, and this was a good introduction, especially
because of the already written codebase. Learning about LLVM was also very interesting.
Most of all I learnt the ins and outs of compiler writing. And for me that was the most
interesting part. That a compiler can be so cleanly decomposed into a few files of Ocaml was
something I was never exposed to before. Also interesting was the process of making design
decisions. For example, to implement the dim() function, we had to override the semantic
checking because dim takes in an array of any size, but the way the semantic checker was
written required a fill matrix type specification with the dimensions.

My advice to future teams would be to take advantage of existing codebases. I learnt a lot

simply by reading previously written code for MicroC, and I think I could have learnt more
if I read code from previous years' projects' files

39

7.4 Paul

Although I've written programs many times before, this was my first time doing a large
group programming project. As a team manager I learned that planning such a project has
its own challenges. Scheduling a group of five people with different schedules and
commitments and keeping track of tasks was more difficult that I expected. It was also
important for me to make sure I listened to everyone’s input equally and did not leave any
team member’s opinions out. Besides the project management aspect, I learned a lot about
the complete compiler pipeline, mostly on the front end, but also about IR and optimization.
The favorite thing I learned about was LLLVM which is a brilliant solution to the multiple
languages and target architectures. Providing a middle layer between the two allows
language developers to target a single virtual assembly language which can be targeted to
any architecture, provided that conversion is written for that specific architecture. Much
like hardware virtualization we have a middle abstraction layer that decouples hardware
from software. Additionally, I now have a much better understanding of how compilers
work which demystified something that seemed very complicated and seemingly beyond
grasp. Particularly, I learned about how the semantic checking produces warning and
errors in the compiler, one of the most useful features when programming.

My advice to future team members is to keep the scope of the language narrow and to work
on tasks as soon as possible since the latter half of the semester has a heavier workload.
Additionally, the language reference manual and final report should be updated throughout
the entire timeline of the project.

7.5 Sharon

Of course, while working on the project, I learned how to create my own programming
language, how assembly code is written, and how there are no limits to how a programming
language can be designed. Before the project, I had never heard of LLVM and was very
intimidated by the project because everyone else seemed to already know what an LLVM
was and what assembly code was, and others on my team were using terms I did not
recognize. However, actually doing the project has made me excited about extending the
project or creating my own unique language. I feel that all projects I have started out
feeling too incompetent to work on end up being fun, fulfilling, and rewarding when I do
end up working on them and putting in all my effort on them. But I always seem to forget
that and still feel the impostor syndrome every time.

All in all, I have learned a lot about working on a software engineering team project. I
learned how to use branches on github, how to use a virtual machine, how to communicate
on Slack, and how to divide responsibilities among a group. Most importantly, I learned
that just like writing essays, programming a compiler is much easier when the work is split
up into many days. Every day, you get to see what you have written or attempted with

40

fresh eyes, from a different perspective. Also, I must say that partner programming is much
more effective than individual programming, because more than one head is better than
one. That would be my advice for future teams. To set specific goals, and assign each goal to
a pair of members on a team. Also, for others in the team to understand and be able to
extend the code that you write, it is much more efficient to have every code block be
commented and for commit messages on github to be descriptive.

41

8. Appendix

parser.mly

/* Ocamlyacc parser for MicroC */

%q{
open Ast
%}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE ASSIGN NOT

%token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR
%token RETURN IF ELSE FOR WHILE INT BOOL VOID
%token RBRACK LBRACK ELIF BREAK FLOAT STRING BYTE
%token SHAPE DIMS FUNC

%token <int> LITERAL

%token <float> FLITERAL

%token <string> ID SLITERAL

%token EOF

VWOoONOUVULDAWNER

RPRERRBERRRR
ONOOUVDAWNRO

%nonassoc NOELSE
%nonassoc ELSE
%nonassoc ELIF
%nonassoc NOLBRACK
%nonassoc LBRACK
%right ASSIGN

NNNNBRE
W NR OV

24 %left OR

25 %left AND

26 %left EQ NEQ

27 %left LT GT LEQ GEQ

28 %left PLUS MINUS

29 %left TIMES DIVIDE

30 %right NOT NEG

31

32 %start program

33 %type <Ast.program> program

34

35 %%

36

37 program:

38 decls EOF { $1 }

39

40 decls:

41 /* nothing */ { [1, [] }

42 | decls vdecl { ($2 :: fst $1), snd $1 }
43 | decls fdecl { fst $1, ($2 :: snd $1) }
44

45 fdecl:

46 typ ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE
47 { { typ = $1;

48 fname = $2;

49 formals = $4;

50 locals = List.rev $7;

51 body = List.rev $8 } }

52

42

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

formals_opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal_list:

typ ID { [($1,%$2)] }
| formal list COMMA typ ID { ($3,%$4) :: $1 }

typ:
INT { Int }
| BOoOL { Bool }
| VOID { Void }
| FLOAT { Float }
| STRING { String }
| BYTE { Byte }
| typ matrix_params %prec NOLBRACK { Matrix($1, List.rev $2) }

matrix_params:
matrix_decl %prec NOLBRACK {[$1]}
| matrix_params matrix_decl {$2 :: $1}

matrix_decl:
LBRACK LITERAL RBRACK {$2}

vdecl list:
/* nothing */ {1}
| vdecl list vdecl { $2 :: $1 }

vdecl:
typ ID SEMI { ($1, $2) }

stmt_list:
/* nothing */ { [] }
| stmt_list stmt { $2 :: $1 }

expr SEMI { Expr $1 }
| RETURN SEMI { Return Noexpr }
| RETURN expr SEMI { Return $2 }
| LBRACE stmt_list RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
| IF LPAREN expr RPAREN stmt elif_ list %prec NOELSE { E1lif(($3 :: (List.rev(fst $6))

), (List.rev((Block([]) :: (List.rev ($5 :: (List.rev (snd $6)))))))) }

97

| IF LPAREN expr RPAREN stmt elif list ELSE stmt { E1if(($3 :: (List.rev(fst $6))),

(List.rev(($8 :: (List.rev ($5 :: (List.rev (snd $6)))))))) }

98

99
100
101
102
103
104
105
106
107
108
109
110

| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
{ For($3, $5, $7, $9) }
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

elif list:
elif {[fst $1],[snd $1]}
| elif_list elif {(fst $2 :: fst $1), (snd $2 :: snd $1)}

elif:
ELIF LPAREN expr RPAREN stmt {$3,$5}

expr_opt:
/* nothing */ { Noexpr }

43

111 | expr {$1}

112

113 expr:

114 LITERAL { Literal($1) }

115 | FLITERAL { FLiteral($1) }

116 | SLITERAL { SLiteral($1) }

117 | TRUE { BoolLit(true) }

118 | FALSE { BoolLit(false) }

119 | ID { Id($1) }

120 | expr PLUS expr { Binop($1, Add, $3) }
121 | expr MINUS expr { Binop($1, Sub, $3) }
122 | expr TIMES expr { Binop($1, Mult, $3) }
123 | expr DIVIDE expr { Binop($1l, Div, $3) }
124 | expr EQ expr { Binop($1, Equal, $3) }
125 | expr NEQ expr { Binop($1, Neq, $3) }
126 | expr LT expr { Binop($1, Less, $3) }
127 | expr LEQ expr { Binop($1, Leq, $3) }
128 | expr GT expr { Binop($1, Greater, $3) }
129 | expr GEQ expr { Binop($1, Geq, $3) }
130 | expr AND expr { Binop($1, And, $3) }
131 | expr OR expr { Binop($1, Or, $3) }
132 | ID matrix_accs { MatrixAccess($1, List.rev $2) }
133 | MINUS expr %prec NEG { Unop(Neg, $2) }

134 | NOT expr { Unop(Not, $2) }

135 | ID ASSIGN expr { Assign($1, $3) }

136 | ID matrix_accs ASSIGN expr { MatrixAssign($1, List.rev $2, $4) }
137 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }
138 | LPAREN expr RPAREN { $2 }

139

140 matrix_accs:

141 matrix_acc %prec NOLBRACK {[$1]}

142 | matrix_accs matrix_acc {$2 :: $1}

143

144 matrix_acc:

145 LBRACK expr RBRACK {$2}

146

147 actuals_opt:

148 /* nothing */ { [] }

149 | actuals_list { List.rev $1 }

150

151 actuals_list:

152 expr { [$1] }

153 | actuals_list COMMA expr { $3 :: $1 }

scanner.mll

(* Ocamllex scanner for MicroC *)
{ open Parser }

rule token = parse
[* " "\t" "\r" "\n"] { token lexbuf } (* Whitespace *)
AN { comment lexbuf } (* Comments *)
| "¢ { LPAREN }
| "y { RPAREN }
| { { LBRACE }

CwVwWoOoNOOUVTEAWNER

44

11 | '} { RBRACE }

2| '] { RBRACK } (*numnum*)

13 | '[! { LBRACK } (*numnum*)

14 | ;¢ { SEMI }

15 | ', { COMMA }

16 | '+ { PLUS }

17 | - { MINUS }

18 | '* { TIMES }

19 | '/ { DIVIDE }

20 | =" { ASSIGN }

21 | "==" {EQ}

22 | "=t { NEQ }

23 | ‘<" { LT}

24 | “¢=" { LEQ }

25 | "> { GT }

26 | ">=" { GEQ }

27 | "&&" { AND }

28 | "[" { OR }

29 | "im { NOT }

30 | "if" { IF }

31 | "else" { ELSE }

32 | "elif" { ELIF } (*numnum*)

33 | "for" { FOR }

34 | "while"™ { WHILE }

35 | "return” { RETURN }

36 | "break" { BREAK } (*numnum*)

37 | "int" { INT }

38 | "bool" { BOOL }

39 | "void" { voID }

40 | "byte" { BYTE } (*numnum*)

41 | "float" { FLOAT } (*numnum*)

42 | "string" { STRING } (*numnum*)

43 | "true" { TRUE }

44 | "false" { FALSE }

45 | "shape" { SHAPE } (*numnum*)

46 | "dims" { DIMS } (*numnum*)

47 | "func" { FUNC } (*numnum*)

48 | ['@'-'9']+ as 1xm { LITERAL(int_of_string 1lxm) }
49 | ['@'-'9"]*".'['@'-'9"]+ as 1xm { FLITERAL(float_of_string 1xm) }
50 | ['a'-'z'" 'A'-'Z']['a'-"'z" 'A'-'Z" '@'-'9" ' _']* as 1lxm { ID(1xm) }
51 | ""t(([~"'])* as Ixm)'"' { SLITERAL(1xm)}
52 | eof { EOF }

53 | _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }
54

55 and comment = parse
56 "*/" { token lexbuf }
57 | _ { comment lexbuf }

semant.ml

(* Semantic checking for the MicroC compiler *)
open Ast

module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if successful,
throws an exception if something is wrong.

O VWOoONOTULEA WNER

[any

Check each global variable, then check each function *)

45

11 let check (globals, functions) =
12 (* Raise an exception if the given list has a duplicate *)
13 let report_duplicate exceptf list =

14 let rec helper =

15 function

16 | n1 :: n2 :: _ when nl = n2 -> raise (Failure (exceptf nl))
17 | _ :: t -> helper t

18 | [1->0

19 in helper (List.sort compare list) in

20 (* Raise an exception if a given binding is to a void type *)
21 let check_not_void exceptf =

22 function | (Void, n) -> raise (Failure (exceptf n)) | _ -> () in
23 (* Raise an exception of the given rvalue type cannot be assigned to
24 the given lvalue type *)

25 let is_int_type a = (match a with

26 | Int|Byte|Float -> true

27 | Matrix (t,_) -> (match t with

28 Int|Byte|Float -> true

29 | _ -> false)

30 | _ -> false

31) in

32 let check_assign lvaluet rvaluet err =

33 if lvaluet == rvaluet then lvaluet

34 else if (is_int_type lvaluet) && (is_int_type rvaluet) then lvaluet
35 else raise err

36 in

37

38 (**** Checking Global Variables ****)

39 (**** Checking Functions ****)

40 (List.iter (check_not_void (fun n -> "illegal void global " ~ n)) globals;
41 report_duplicate (fun n -> "duplicate global " ~ n)

42 (List.map snd globals);

43 if List.mem "print" (List.map (fun fd -> fd.fname) functions)
44 then raise (Failure "function print may not be defined")

45 else ();

46 report_duplicate (fun n -> "duplicate function " ~ n)

47 (List.map (fun fd -> fd.fname) functions);

48 (* Function declaration for a named function *)

49 let built_in_decls =

50 StringMap.add "dim"

51 {

52 typ = Int;

53 fname = "dim";

54 (* The arguments to Matrix

55 don't matter, they are overridden in the checker below, but we need
56 them here for this to compile *)

57 formals = [(Matrix(Int, [1]), "x") 1;

58 locals = [];

59 body = [];

60 }

61

62 (StringMap.add "print"

63

64 typ = Void;

65 fname = "print";

66 formals = [(Int, "x") 1],

67 locals = [];

68 body = [];

69 }

70 (StringMap.add "open"

46

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

typ = Int;
fname = "open";
formals = [(String, "x"); (Int,"y") 1;
locals = [];
body = [];
}
(StringMap.add "read"
{
typ = Int;
fname = "read";

formals = [(String,"w"); ((Matrix(Byte , [])), "x") 1;

locals =

body = []
)
(StringMap.add "write"
{

typ = Int;

fname = "write";

[1;

formals = [(String,"w"); ((Matrix(Byte , [])), "x") 1;

locals =
body = []
}
(StringMap.add "printbyte"
{
typ = Void;
fname = "printbyte";
formals = [(Byte, "x")];
locals = [];
body = [];
}
(StringMap.add "printb"
{

[1;

typ = Void;
fname = "printb";
formals = [(Bool, "x")];
locals = [];
body = [1;
}
(StringMap.add "printstrn"
{
typ = Void;
fname = "printstrn”;
formals = [(String, "x") 1,
locals = [];
body = [1;
}
(StringMap.add "printfl"
{
typ = Void;
fname = "printfl";
formals = [(Float, "x")];
locals = [];
body = [];
}
(StringMap.singleton "printstr"
{
typ = Void;
fname = "printstr";
formals = [(String, "x") 1;

47

131 locals = [];

132 body = [];

133

134)))))))))

135 in

136 let built_in_decls =

137 List.fold_left (fun m f ->

138 StringMap.add f

139 {

140 typ = Void;

141 fname = f;

142 formals = [(Matrix(Int, [1]), "x"); (Matrix(Int, [1]), "y"); (Matrix(I
nt, [1]), "z") 1;

143 locals = [];

144 body = [];

145 }

146 m

147) built_in_decls ["el_add"; "el_sub"; "el_mul"; "el_div"]
148 in

149 (*

150 let built_in_decls =

151 List.fold_left (fun m f ->

152 StringMap.add f

153 {

154 typ = Void;

155 fname = f;

156 formals = [(Matrix(Int, [1]), "x"); (Matrix(Int, [1]), "y"); (Matrix(B
ool, [true]), "z") I;

157 locals = [];

158 body = [];

159 }

160 m

161) built_in_decls ["el_and"; "el or"; "el eq"; "el neq"; "el less"; "el leq"; "
el_greater"; "el_geq"]

162 in

163 *)

164 let built_in_decls =

165 List.fold_left (fun m f ->

166 StringMap.add f

167 {

168 typ = Void;

169 fname = f;

170 formals = [(Matrix(Int, [1]), "x"); (Matrix(Int, [1]), "y"); (Matrix(I
nt, [1]), "z") 15

171 locals = [];

172 body = [];

173 }

174 m

175) built_in_decls ["bc_add"; "bc_sub"; "bc_mul"; "bc_div"]
176 in

177 let function_decls =

178 List.fold_left (fun m fd -> StringMap.add fd.fname fd m)

179 built_in_decls functions in

180 let function_decl s =

181 try StringMap.find s function_decls

182 with | Not_found -> raise (Failure ("unrecognized function " ~ s)) in
183 let _ = function_decl "main" in (* Ensure "main" is defined *)
184 let check_function func =

185 (List.iter

186 (check_not_void

48

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

(fun n -> "illegal void formal " ~ (n ~ (" in " ~ func.fname))))
func.formals;
report_duplicate
(fun n -> "duplicate formal " ~ (n ~ (" in " ~ func.fname)))
(List.map snd func.formals);
List.iter
(check_not_void
(fun n -> "illegal void local " ~ (n ~ (" in " ~ func.fname))))
func.locals;
report_duplicate
(fun n -> "duplicate local " ~ (n ~ (" in " ~ func.fname)))
(List.map snd func.locals);
(* Type of each variable (global, formal, or local *)
let symbols =
List.fold_left (fun m (t, n) -> StringMap.add n t m) StringMap.
empty (globals @ (func.formals @ func.locals)) in
let type_of_identifier s =
try StringMap.find s symbols
with | Not_found -> raise (Failure ("undeclared identifier " 7 s)) in
let type_of _matrix_identifier s =
try let sym = StringMap.find s symbols in
match sym with
Matrix (t,_) -> t
| _ -> raise (Failure ("identifier isn't a matrix " * s))
with | Not_found -> raise (Failure ("undeclared identifier " ~ s)) in
(* Return the type of an expression or throw an exception *)
let rec expr =
function
| Literal _ -> Int
FLiteral _ -> Float
SLiteral _ -> String
BoolLit _ -> Bool
Id s -> type_of_identifier s
MatrixAccess (s, _) -> type_of _matrix_identifier s
(MatrixAssign (s, _,e) as ex) ->
let 1t = type_of_identifier s
and rt = expr e
in
check_assign 1t rt
(Failure
("illegal assignment " ~
((string_of_typ 1t) ~
("="/\
((string_of_typ rt) ~
(" in " ~ (string_of_expr ex)))))))
| (Binop (el, op, e2) as e) ->
let t1 = expr el
and t2 = expr e2

in
(match op with
| Add | Sub | Mult | Div when (t1 = Int) && (t2 = Int) -> Int
| Add | Sub | Mult | Div when (t1 = Float) && (t2 = Float) -> Float
| Add | Sub | Mult | Div when (tl = Byte) && (t2 = Byte) -> Byte
| Add | Sub | Mult | Div when (t1 = Byte) && (t2 = Int) -> Byte
| Add | Sub | Mult | Div when (t1 = Byte) && (t2 = Float) -> Byte
| Add | Sub | Mult | Div when (t1l = Int) &% (t2 = Byte) -> Int
| Add | Sub | Mult | Div when (tl = Int) && (t2 = Float) -> Int
| Add | Sub | Mult | Div when (t1 = Float) & (t2 = Byte) -> Float
| Add | Sub | Mult | Div when (t1 = Float) && (t2 = Int) -> Float
| Equal | Neq when t1 = t2 -> Bool

49

247 Equal | Neq when (tl = Int) & (t2 = Byte) -> Bool
248 Less Leq | Greater | Geq when (tl = Int) & & (t2 = Int) -> Bool
= Int) & (t2 = Byte) -> Bool

| =
| | | |
249 | Less | Leq | Greater | Geq when (tl
| | | |
| | | |

250 Less Leq | Greater | Geq when (tl1 = Byte) & & (t2 = Int) -> Bool
251 Less Leq | Greater | Geq when (is_int_type t1) && (is_int_type t2
) -> Bool

252 | And | Or when (t1 = Bool) && (t2 = Bool) -> Bool

253 | ->

254 raise

255 (Failure

256 ("illegal binary operator " ~

257 ((string_of_typ t1) ~

258 ("o

259 ((string_of_op op) ~

260 ("o

261 ((string_of_typ t2) ~

262 (" in " " (string_of_expr €))))))))))
263 | (unop (op, e) as ex) ->

264 let t = expr e

265 in

266 (match op with

267 | Neg when t = Int -> Int

268 | Not when t = Bool -> Bool

269 | ->

270 raise

271 (Failure

272 ("illegal unary operator " *

273 ((string_of_uop op) ~

274 ((string_of_typ t) *

275 (" in " ~ (string_of_expr ex)))))))
276 | Noexpr -> Void

277 | (Assign (var, e) as ex) ->

278 let 1t = type_of_identifier var

279 and rt = expr e

280 in

281 check_assign 1t rt

282 (Failure

283 ("illegal assignment " ~

284 ((string_of_typ 1t) ~

285 ("= A

286 ((string_of_typ rt) ~

287 (" in " ~ (string_of_expr ex)))))))

288 | (call (fname, actuals) as call) ->

289 let fd = function_decl fname

290 in

291 (if (!'=) (List.length actuals) (List.length fd.formals)
292 then

293 raise

294 (Failure

295 ("expecting " ~

296 ((string_of_int (List.length fd.formals)) ~
297 (" arguments in " ~ (string_of_expr call)))))
298 else

299 if (fname = "dim") then

300 let e = List.hd actuals in

301 match (e) with

302 | Id(m) -> (match (type_of _identifier m) with
303 | Matrix(_,_) -> ()

304 | _ -> raise (Failure ("illegal argument to dim() found

expected Matrix in " ~ (string_of_expr e))))

50

305 | _ -> raise (Failure ("illegal argument to dim() found expe
cted Matrix in " ~ (string_of_expr e)))

306 else if (fname = "el _add" || fname = "el sub" || fname = "el mul" || fnam
e = "el div") then

307 let e = List.hd actuals in

308 (match(e) with

309 | Id(m) -> (match (type_of identifier m) with

310 | Matrix(_,) ->

311 let comp_matrix el e2 =

312 (match(el, e2) with

313 | Td(m1), Id(m2) -> (match (type_of_identifier mi, typ
e_of_identifier m2) with

314 | Matrix(t1l, 11), Matrix(t2, 12) ->

315 let rec compareVs vl v2 = match vl, v2 with
316 | 11, [] -> true

317 | [1, _

318 | _, [1 -> false

319 | x::xs, y::ys -> x=y && compareVs xs ys
320 in

321 if (t1 != t2) then

322 raise(Failure ("incompatibles types of mat
rices to " ~ fname))

323 else if not (compareVs 11 12) then

324 raise(Failure ("incompatibles dimensions o
f matrices to " ”~ fname))

325 else

326 e2

327 | _, _ -> raise (Failure ("illegal argument to " *
fname ~ " found expected Matrix in " ~ (string_of_expr e))))

328 | _, _ -> raise (Failure ("illegal argument to " ~ fna
me ~ " found expected Matrix in " ~ (string_of_expr e))))

329 (* checking to see if two matrices have same type and
shape *)

330 in

331 ignore(List.fold_left comp_matrix e (List.tl actuals)); ()
332 | _ -> raise (Failure ("illegal argument to " ~ fname ~ " foun
d expected Matrix in " ~ (string_of_expr e))))

333 | _ -> raise(Failure ("illegal argument to " ~ fname ~ " found exp
ected Matrix in "~ (string_of_expr e)))

334

335 else if (fname = "bc_add" || fname = "bc_sub" || fname = "bc_mul" || fnam
e = "bc_div") then

336 let e = List.hd actuals in

337 (match(e) with

338 | Id(m) -> (match (type_of_identifier m) with

339 | Matrix(_, [1]) ->

340 let comp_matrix el e2 =

341 (match(el, e2) with

342 | Td(m1), Id(m2) -> (match (type_of_identifier mi, typ
e_of_identifier m2) with

343 | Matrix(t1l, 11), Matrix(t2, 12) ->

344 let rec compareVs vl v2 = match vl, v2 with
345 | [1, [] -> true

346 | 11, _

347 | _, [1 -> false

348 | x::xs, y::ys -> x=y && compareVs xs ys
349 in

350 if (t1 != t2) then

351 raise(Failure ("incompatibles types of mat

rices to " ~ fname))

51

352
353

else if not (compareVs 11 12) then
raise(Failure ("incompatibles dimensions o

f matrices to " ”~ fname))

354
355
356

else
e2
| _, _ -> raise (Failure ("illegal argument to " *

fname ~ " found expected Matrix in " ~ (string_of _expr e))))

357

| , _ -> raise (Failure ("illegal argument to " ~ fna

me ~ " found expected Matrix in " ~ (string_of_expr e))))

358
shape *)
359
360

(* checking to see if two matrices have same type and

in
ignore(List.fold_left comp_matrix (List.hd (List.tl actual

s)) (List.tl actuals)); ()

361

-> raise (Failure ("illegal argument to " ~ fname ~ " foun

d expected Matrix in " » (striﬁg_of_expr e))))

362

| _ -> raise(Failure ("illegal argument to " ~ fname ~ " found exp

ected Matrix in "~ (string_of_expr e)))

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

)

else

List.iter2
(fun (ft, _) e ->
let et = expr e
in
ignore
(check_assign ft et
(Failure
("illegal actual argument found " *
((string_of_typ et) ~
(" expected " ~
((string_of_typ ft) ~
(" in "~ (string_of_expr e)))))))))
fd.formals actuals;
fd.typ) in
let check_bool_expr e =
if (!'=) (expr e) Bool
then
raise
(Failure
("expected Boolean expression in " ~ (string_of_expr e)))
else () in
(* Verify a statement or throw an exception *)
let rec stmt =

function
| Block sl ->
let rec check_block =
(function
| [(Return _ as s)] -> stmt s
| Return _ :: _ ->

raise (Failure "nothing may follow a return")
| Block sl :: ss -> check_block (sl @ ss)
| s :: ss -> (stmt s; check_block ss)
| [1->0)
in check_block sl
| Expr e -> ignore (expr e)
| Return e ->
let t = expr e
in
if t = func.typ

52

405 then ()

406 else
407 raise
408 (Failure
409 ("return gives " ~
410 ((string_of_typ t) ~
411 (" expected " ~
412 ((string_of_typ func.typ) *
413 (" in " ~ (string_of_expr €)))))))
414 | If (p, bl, b2) -> (check_bool_expr p; stmt bl; stmt b2)
415 | Elif (exprs, stmts) ->
416 (List.iter check_bool _expr exprs;
417 List.iter stmt stmts)
418 | For (e1, e2, e3, st) ->
419 (ignore (expr el);
420 check_bool_expr e2;
421 ignore (expr e3);
422 stmt st)
423 | while (p, s) -> (check_bool_expr p; stmt s)
424 in stmt (Block func.body))
425 in List.iter check_function functions)
426
427
ast.ml
1 (* Abstract Syntax Tree and functions for printing it *)
2
3 type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |
4 And | oOr
5
6 type uop = Neg | Not
7
8 type typ = Int | Bool | Void
9 | Float | String | Byte
10 | Matrix of typ * int list
11
12 type bind = typ * string
13
14 type expr =
15 Literal of int
16 FLiteral of float
17 BoolLit of bool
18 SLiteral of string
19 Id of string
20 Binop of expr * op * expr

|
|
|
|
|
21 | Unop of uop * expr
|
|
|
|

22 Assign of string * expr

23 Call of string * expr list

24 MatrixAccess of string * expr list

25 MatrixAssign of string * expr list * expr
26 Noexpr

27

28 type stmt =

29 Block of stmt list

53

30 | Expr of expr

31 | Return of expr

32 | If of expr * stmt * stmt

33 | Elif of expr list * stmt list

34 | For of expr * expr * expr * stmt

35 | While of expr * stmt

36

37 type func_decl = {

38 typ : typ;

39 fname : string;

40 formals : bind list;

41 locals : bind list;

42 body : stmt list;

43}

44

45

46

47 type program = bind list * func_decl 1list

48

49 (* Pretty-printing functions *)

50

51 let string_of_op = function

52 Add -> "+"

53 | Sub -> "-"

54 | Mult -> "x"

55 | Div -> "/"

56 | Equal -> "=="

57 | Neq -> "!="

58 | Less -> "<"

59 | Leq -> "<="

60 | Greater -> "»"

61 | Geq -> "»>="

62 | And -> "&&"

63 | or -> "||"

64

65 let string_of_uop = function

66 Neg -> "-"

67 | Not -> "I

68

69 let rec string_of_expr = function

70 Literal(l) -> string of_int 1

71 | FLiteral(l) -> string_of float 1

72 | SLiteral(l) -> 1

73 | BoolLit(true) -> "true"

74 | BoolLit(false) -> "false"

75 | Id(s) -> s

76 | MatrixAccess (t,dims) -> t ~ (List.fold_left (fun acc el -> "[" ~ (string_of_expr
el) ~ "1" ~acc) "" dims)

77 | MatrixAssign (t,dims,e) -> let r = string_of_expr e in
78 t ~ (List.fold_left (fun acc el -> "[" ~ (string_of_expr el) ~ "]" ~ acc)"" dim
s)y A" =""rrp

79 | Binop(el, o, e2) ->

80 let 1 = string_of_expr el and r = string_of_expr e2 in
81 (L ~" "~ string_of_ opo ~ " " ~r)

82 | Unop(o, e) -> string_of_uop o ~ string_of_expr e
83 | Assign(v, e) -> v ~ " =" ~ string_of_expr e

84 | call(f, el) ->

85 f ~ "(" ~ String.concat ", " (List.map string_of_expr el) ~ ")"
86 | Noexpr -> ""

87

54

88 let rec string of_stmt = function
89 Block(stmts) ->
90 "{\n" ~ String.concat "" (List.map string_of_stmt stmts) ~ "}\n"
91 | Expr(expr) -> string_of_expr expr ~ ";\n";
92 | Return(expr) -> "return " ~ string_of_expr expr ~ ";\n";
93 | If(e, s, Block([])) -> "if (" ~ string_of_expr e ~ ")\n" * string_of_stmt s
94 | If(e, s1, s2) -> "if (" ~ string_of_expr e ~ ")\n" ~
95 string_of _stmt s1 ~ "else\n" ~ string _of stmt s2
96 | Elif(exprs, stmts) -> "if (" ~ string_of_expr (List.hd exprs) ~ ")\n" ~
97 string_of_stmt (List.hd stmts)
98 A String.concat "" (List.map2 (fun e s -> "elif (" ~ string_of_expr e ~ ")\n" *
string of_stmt s) (List.tl exprs) (List.tl (List.rev (List.tl (List.rev stmts)))))
99 AN "else\n" ~ string_of_stmt (List.hd (List.rev stmts))
100 | For(el, e2, e3, s) ->
lo1 "for (" ~ string_of_expr el ~ " ; " ~ string_of_expr e2 ~ " ; " A
102 string of _expr e3 ~ ") " ~ string of_stmt s
103 | Wwhile(e, s) -> "while (" ~ string_of _expr e ~ ") " * string_of_stmt s
104
105 let rec string_of_typ = function
106 Int -> "int"
107 | Bool -> "bool"
108 | Vvoid -> "void"
109 | Float -> "float"
1106 | String -> "string"
111 | Byte -> "byte"
112 | Matrix(t, 1) -> (string_of_typ t) ~ (List.fold_left (fun acc el -> acc ~ "[" ~ (st
ring_of_int el) ~ "]") "" 1)
113
114 let string_of_vdecl (t, id) = string of typ t ~ " " ~ id ~ ";\n"
115
116 let string_of_ fdecl fdecl =
117 string_of_ typ fdecl.typ ~ " " ~
118 fdecl.fname ™~ "(" ~ String.concat ", " (List.map snd fdecl.formals) *
119 ")\n{\n" ~
120 String.concat "" (List.map string_of_vdecl fdecl.locals) *
121 String.concat "" (List.map string_of_stmt fdecl.body) ~
122 "}\n"
123
124 let string_of_program (vars, funcs) =
125 String.concat "" (List.map string_of_vdecl vars) ~ "\n" 7
126 String.concat "\n" (List.map string_of_fdecl funcs)
codegen.ml
1 (* Code generation: translate takes a semantically checked AST and
2 produces LLVM IR
3
4 LLVM tutorial: Make sure to read the OCaml version of the tutorial
5
6 http://1lvm.org/docs/tutorial/index.html
7
8 Detailed documentation on the OCaml LLVM library:
9
10 http://1lvm.moe/
11 http://1lvm.moe/ocaml/
12

55

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
in
56
57

*)

module L = Llvm

module A = Ast

module StringMap = Map.Make(String)

let translate (globals, functions) =

|1 in

59

[T in

60
61
62
63
in
64
65
66
67

let context = L.global_context () in

let the_module = L.create_module context "NumNum"

and i32_t = L.i32_type context

and i8 t = L.i8_ type context

and il_t L.i1_type context

and void_t = L.void_type context

and float_t = L.double_type context

and string_t = L.pointer_type (L.i8_type context)

and array_t t dims = L.array_type t (List.fold_left (fun acc el -> acc*el) 1 dims) i

let rec ltype_of_typ =
function
| A.Int -> i32_t
.Bool -> i1 _t
.Void -> void_t
.String -> string_t
.Float -> float_ t
.Byte -> i8_t
.Matrix (t, dims) -> array_t (ltype_of_typ t) dims in
(* Declare each global variable; remember its value in a map *)
let global vars =
let errno = (L.define_global "errno" (L.const_int i32_t @) the_module,A.Int) in
let () = L.set_linkage L.Linkage.Available_externally (fst errno) in
let global_var m (t, n) =
let init = L.const_int (ltype_of _typ t) ©
in StringMap.add n ((L.define_global n init the_module),t) m
in List.fold_left global_var (StringMap.singleton "errno" errno) globals in

>>>>>>>

(* Declare linux functions numnum will call *)

let printf_t = L.var_arg function_type i32_t [| L.pointer_type i8 t |] in

let printf_func = L.declare_function "printf" printf_t the_module in

let open_t = L.var_arg_function_type i32_t [| L.pointer_type i8 t;i32_t |] in

let open_func = L.declare_function "open" open_t the_module in

let read_t = L.var_arg_function_type i32_t [| i32_t; L.pointer_type i32_ t; i32_t |]

let read_func = L.declare_function "read" read_t the_module in
let readbyte t = L.var_arg_function_type i32_t [| i32_t; L.pointer_type i8 t; i32_t

let readbyte_func = L.declare_function "read" readbyte_t the_module in
let readfl_t = L.var_arg_function_type i32_t [| i32_t; L.pointer_type float_t; i32_t

let readfl_func = L.declare_function "read" readfl_t the_module in

let creat_t = L.var_arg_function_type i32_t [| L.pointer_type i8 t;i32_t |] in

let creat_func = L.declare_function "creat" creat_t the_module in

let write_t = L.var_arg_function_type i32 t [| i32_t; L.pointer_type i8 t; i32 t |]

let write_func = L.declare_function "write" write_t the_module in

let close_t = L.var_arg_function_type i32_t [| i32_t |] in

let close_func = L.declare_function "close" close_t the_module in

(* Define each function (arguments and return type) so we can call it *)

56

68 let function_decls =

69 let function_decl m fdecl =

70 let name = fdecl.A.fname

71 and formal_types =

72 Array.of_list

73 (List.map (fun (t, _) -> ltype_of_typ t) fdecl.A.formals) in

74 let ftype = L.function_type (ltype_of_typ fdecl.A.typ) formal_types

75 in

76 StringMap.add name ((L.define_function name ftype the_module), fdecl)
77 m

78 in List.fold_left function_decl StringMap.empty functions in

79 (* Fill in the body of the given function *)

80 let build_function_body fdecl =

81 let (the_function, _) = StringMap.find fdecl.A.fname function_decls in

82 let builder = L.builder_at_end context (L.entry_block the_function) in

83 let int_format_str = L.build_global_ stringptr "%d\n" "fmt" builder in

84 let byte_format_str = L.build_global_stringptr "%x\n" "fmt" builder in

85 let float_format_str = L.build_global_stringptr "%f\n" "fmt" builder in
86 let string_format_str = L.build_global_ stringptr "%s\n" "fmt" builder in
87 let stringn_format_str = L.build_global_stringptr "%s" "fmt" builder in
88 (* Construct the function's "locals": formal arguments and locally

89 declared variables. Allocate each on the stack, initialize their

920 value, if appropriate, and remember their values in the "locals" map *)
91 let local_vars =

92 let add_formal m (t, n) p =

93 (L.set_value_name n p;

94 let local = L.build_alloca (ltype_of _typ t) n builder

95 in (ignore (L.build_store p local builder); StringMap.add n (local,t) m)) in
96 let add_local m (t, n) =

97 let local_var = L.build_alloca (ltype_of_typ t) n builder

98 in StringMap.add n (local_var,t) m in

99 let formals =

100 List.fold_left2 add_formal StringMap.empty fdecl.A.formals

101 (Array.to_list (L.params the_function))

102 in List.fold_left add_local formals fdecl.A.locals in

103 (* Return the value for a variable or formal argument *)

104 let lookup n =

105 try match (StringMap.find n local_vars) with (1t,_) -> 1t

106 with | Not_found -> match (StringMap.find n global vars) with (1t,_) -> 1t in
107 (* Look up the dimensions for a matrix *)

108 let lookup_dims n =

109 let get_dims t = match t with

110 A.Matrix (_,dims) -> dims

111 | _ ->[7] in

112 try match (StringMap.find n local_vars) with (_,t) -> get_dims t

113 with | Not_found -> match (StringMap.find n global_vars) with (_,t) -> get_dims
t in

114 let lookup_type n =

115 let get_type t = match t with

116 A.Matrix (typ,_) -> typ

117 | _ ->t in

118 try match (StringMap.find n local_vars) with (_,typ) -> get_type typ
119 with | Not_found -> match (StringMap.find n global_vars) with (_,typ) -> get_ty
pe typ in

120 let integer_conv_op lh rh builder =

121 let rht = (L.type_of rh) in

122 let lht= (L.type_of 1lh) in

123 (match 1lht with

124 | _ when lht == i8 t -> (

125 match rht with

57

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

| _ when rht == i32_t -> (L.build_intcast rh i8_t "conv" builder)

| _ when rht == float_t -> (L.build_uitofp rh i8_t "conv" builder)
| _ ->rh)

when lht == i32_t -> (

match rht with

| _ when rht == i8 t -> (L.build_intcast rh i32_t "conv" builder)

| _ when rht == float_t -> (L.build_fptosi rh i32_t "conv" builder)
| — ->rh)

when lht == float_t -> (

match rht with

| _ when rht == float_t -> rh
| _ -> (L.build_sitofp rh float_t "conv" builder))
->rh) in

let integer_conversion lh rh builder =
let rht = (L.type_of rh) in
(match 1h with

when rht == float_t -> rh
when rht == i8 t -> (L.build_uitofp rh float_t "conv" builder)

| A.Byte -> (match rht with
| _ when rht == i8_t -> rh
| _ when rht == float_t -> (L.build_fptosi rh i8 t "conv" builder)
| _ -> (L.build_intcast rh i8_t "conv" builder))
| A.Int -> (match rht with
| _ when rht == i32_t -> rh
| _ when rht == float_t -> (L.build_fptosi rh i32_t "conv" builder)
| _ -> (L.build_intcast rh i32_t "conv" builder))
| A.Float -> (match rht with
I
I
I

_ -> (L.build_sitofp rh float_t "conv" builder))
-> rh) in

(* Construct code for an expression; return its value *)
let rec expr builder =

function

| A.Literal i -> L.const_int i32_t i

| A.FLiteral i -> L.const_float float_t i

| A.SLiteral 1 -> L.build _global_stringptr 1 "tmp" builder
| A.BoolLit b -> L.const_int i1 _t (if b then 1 else 0)

| A.Noexpr -> L.const_int i32_t @

| A.Id s -> L.build_load (lookup s) s builder

| A.MatrixAccess (s, params) ->

let dims = lookup_dims s in
let acc_params = List.map (fun el -> (expr builder el)) params in
let get_pos = List.fold_right2

(fun p d acc -> (L.build_add p (L.build_mul (L.const_int i32

t d) acc "tmp" builder) "tmp" builder))

169
170
171
172

acc_params
dims
(L.const_int i32_t @) in

L.build load (L.build _gep (lookup s) [|L.const_int i32_t @;get pos|] "tmp" b

uilder) "tmp" builder

173
174
175
)))3%)
176
177
178
179
180
181
182

| A.Binop (el, op, e2) ->
let el' = expr builder el in

let e2' = expr builder e2 in (*(print_int (L.integer_bitwidth (L.type_of el’

let e2f = (integer_conv_op el' e2' builder) in
let etype = L.classify type (L.type_of (expr builder el))
in
(match etype with
| L.TypeKind.Double ->
(match op with
| A.Add -> L.build_fadd

58

183 | A.Sub -> L.build_fsub

184 | A.Mult -> L.build_fmul

185 | A.Div -> L.build_fdiv

186 | A.And -> L.build_and

187 | A.or -> L.build_or

188 | A.Equal -> L.build_fcmp L.Fcmp.Oeq

189 | A.Neq -> L.build_fcmp L.Fcmp.One

190 | A.Less -> L.build_fcmp L.Fcmp.O0lt

191 | A.Leq -> L.build_fcmp L.Fcmp.Ole

192 | A.Greater -> L.build_fcmp L.Fcmp.Ogt

193 | A.Geq -> L.build_fcmp L.Fcmp.Oge) el' e2f "tmp" builder
194 | -

195 (match op with

196 | A.Add -> L.build_add

197 | A.Sub -> L.build_sub

198 | A.Mult -> L.build _mul

199 | A.Div -> L.build_sdiv

200 | A.And -> L.build_and

201 | A.Or -> L.build_or

202 | A.Equal -> L.build icmp L.Icmp.Eq

203 | A.Neq -> L.build_icmp L.Icmp.Ne

204 | A.Less -> L.build_icmp L.Icmp.Slt

205 | A.Leq -> L.build_icmp L.Icmp.Sle

206 | A.Greater -> L.build icmp L.Icmp.Sgt

207 | A.Geq -> L.build_icmp L.Icmp.Sge) el' e2f "tmp" builder)
208 | A.Unop (op, e) ->

209 let e' = expr builder e

210 in

211 (match op with | A.Neg -> L.build_neg | A.Not -> L.build_not) e’
212 “"tmp" builder

213 | A.Assign (s, e) ->

214 let e' = expr builder e in

215 let s' = (lookup s) in

216 let ef = (integer_conversion (lookup_type s) e' builder) in

217 (ignore (L.build_store ef s' builder)); ef

218 | A.MatrixAssign (s,dims_assign,e) ->

219 let e' = expr builder e in

220 let s' = (lookup s) in

221 let ef = (integer_conversion (lookup_type s) e' builder) in

222 let dims = lookup_dims s in

223 let acc_params = List.map (fun el -> (expr builder el)) dims_assign in
224 let get_pos = List.fold_right2

225 (fun p d acc -> (L.build_add p (L.build_mul (L.const_int i32
_t d) acc "tmp" builder) "tmp" builder))

226 acc_params

227 dims

228 (L.const_int i32_t @) in

229 L.build_store ef (L.build _gep s' [|L.const_int i32_t ©@;get pos|] "tmp" buil
der) builder

230 | A.call ("print", ([e 1)) | A.call ("printb", ([e 1)) ->

231 L.build_call printf_func [| int_format_str; expr builder e |]

232 "printf" builder

233 | A.call ("printfl", ([e 1)) ->

234 L.build_call printf_func [| float_format_str; expr builder e |]
235 "printf" builder

236 | A.call ("printstr", ([e 1)) ->

237 L.build_call printf_func [| string_format_str; expr builder e |]
238 "printf" builder

239 | A.call ("printbyte", ([e 1)) ->

240 L.build_call printf_func [| byte format_str; expr builder e |]

59

241 "printf" builder

242 | A.call ("printstrn", ([e 1)) ->

243 L.build_call printf_func [| stringn_format_str; expr builder e |]

244 "printf" builder

245 | A.call ("dim", ([e 1)) ->

246 (match e with

247 | A.Id(t) ->

248 let d = L.build_alloca i32_t "tmp" builder in

249 (ignore (L.build_store (L.const_int i32_t (List.length (lookup_dims
t))) d builder);

250 L.build_load d "tmp" builder)

251 | _ -> expr builder e)

252 | A.call (op, ([a; b; c])) ->

253 (match op with

254 | "el _add" | "el_sub" | "el _mul" | "el div" ->

255 let el op = op in

256 (match a, b, c with

257 | A.Id(x), A.Id(y), A.Id(z) ->

258

259 (* Get a list of params lists *)

260 let dims = lookup_dims x in

261 let rec range i j = if i >= j then [] else A.Literal(i) ::
(range (i+1) j) in

262 let dim2 = range 0 1 in

263 let diml = range © 1 in

264 let tmpl = List.concat (List.map (fun x -> List.map (fun y
-> y::[x]) dim2) diml) in

265 let tmp2 = List.fold_left (fun tmp dim -> (List.concat (Li
st.map (fun x -> List.map (fun y -> y::x) (range © dim)) tmp))) tmpl dims in

266

let

all_|

pos = List.map List.rev (List.map List.rev (List.m

ap List.tl (List.map List.tl (List.map List.rev tmp2)))) in

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

(* Do multiplication at each of the positions *)
let do_op = fun builder params ->

let
let
let
let
let
let

el = A.MatrixAccess(x, params) in
e2 = A.MatrixAccess(y, params) in
el' = expr builder el in
e2' = expr builder e2 in

etype = L.classify_type (L.type_of el') in
r = (match etype with
| L.TypeKind.Double ->

(match el_op with

| "el add" -> L.build_fadd
"el sub"™ -> L.build_fsub
"el_mul" -> L.build_fmul
"el_div" -> L.build_fdiv

*

|

|

|

(

| "el and" -> L.build_and

| "el or" -> L.build_or

| "el_eq" -> L.build_fcmp L.Fcmp.Oeq
| "el neq" -> L.build_fcmp L.Fcmp.One

| "el less" -> L.build _fcmp L.Fcmp.Olt

| "el leq"™ -> L.build_fcmp L.Fcmp.Ole

| "el greater" -> L.build_fcmp L.Fcmp.0gt
| "el geq" -> L.build_fcmp L.Fcmp.Oge

*)
|

_ -> raise (Failure ("Unable to do eleme

nt-wise operation " ~ el_op ~ " on matrices"))

293
294

)

| _ ->

60

295 (match el_op with

296 | "el_add" -> L.build_add

297 | "el sub" -> L.build_sub

298 | "el mul™ -> L.build_mul

299 | "el div" -> L.build_sdiv

300 (*

301 | "el and" -> L.build_and

302 | "el or" -> L.build_or

303 | "el eq" -> L.build_icmp L.Icmp.Eq

304 | "el_neq" -> L.build_icmp L.Icmp.Ne

305 | "el less"™ -> L.build_icmp L.Icmp.Slt

306 | "el leq"™ -> L.build_icmp L.Icmp.Sle

307 | "el greater" -> L.build_icmp L.Icmp.Sgt

308 | "el_geq" -> L.build_icmp L.Icmp.Sge

309 *)

310 | _ -> raise (Failure ("Unable to do eleme
nt-wise operation " ~ el_op ~ " on matrices"))

311)

312) el' e2" "tmp" builder

313 in

314 let z' = (lookup z) in

315 let ef = (integer_conversion (lookup_type z) r builder
) in

316 let dims = lookup_dims z in

317 let acc_params = List.map (fun el -> (expr builder el)
) params in

318 let get_pos = List.fold_right2

319 (fun p d acc -> (L.build_add p (L.bu
ild_mul (L.const_int i32_t d) acc "tmp" builder) "tmp" builder))

320 acc_params

321 dims

322 (L.const_int i32_t ©) in

323 ignore(L.build_store ef (L.build_gep z' [|L.const_int

i32_t @;get_pos|] "tmp" builder) builder); builder

324 in

325 ignore(List.fold_left do_op builder all pos); L.const_int

i32 .t o

326

327 | _, _, _ -> raise (Failure ("Unable to do element-wise operat
ion " ~ el op » " on matrices"))

328)

329 | "bc_add" | "bc_sub™ | "bc_mul" | "bc_div" ->

330 let bc_op = op in

331 (match a, b, c with

332 | A.Id(x), A.Id(y), A.Id(z) ->

333 (* Get a list of params lists *)

334 let dims = lookup_dims y in

335 let rec range i j = if i >= j then [] else A.Literal(i) ::
(range (i+1) j) in

336 let dim2 = range 0 1 in

337 let diml = range © 1 in

338 let tmpl = List.concat (List.map (fun x -> List.map (fun y
-> y::[x]) dim2) diml) in

339 let tmp2 = List.fold_left (fun tmp dim -> (List.concat (Li
st.map (fun x -> List.map (fun y -> y::x) (range © dim)) tmp))) tmpl dims in

340 let all pos = List.map List.rev (List.map List.rev (List.m
ap List.tl (List.map List.tl (List.map List.rev tmp2)))) in

341

342 (* Do multiplication at each of the positions *)

343 let do_op = fun builder params ->

61

344 let el = A.MatrixAccess(x, [A.Literal(@)]) in

345 let e2 = A.MatrixAccess(y, params) in

346 let el' = expr builder el in

347 let e2' = expr builder e2 in

348 let etype = L.classify_type (L.type_of el') in
349 let r = (match etype with

350 | L.TypeKind.Double ->

351 (match bc_op with

352 | "bc_add" -> L.build_fadd

353 | "bc_sub™ -> L.build_fsub

354 | "bc_mul" -> L.build_fmul

355 | "bc_div" -> L.build_fdiv

356 | _ -> raise (Failure ("Unable to do broad
cast operation " ”~ bc_op * " on matrices"))

357)

358 | ->

359 (match bc_op with

360 | "bc_add" -> L.build_add

361 "bc_sub" -> L.build_sub

362 "bc_mul" -> L.build_mul

|
|

363 | "bc_div" -> L.build_sdiv
|

364 _ -> raise (Failure ("Unable to do broad
cast operation " ~ bc_op ~ " on matrices"))

365)

366) el' e2' "tmp" builder

367 in

368 let z' = (lookup z) in

369 let ef = (integer_conversion (lookup_type z) r builder
) in

370 let dims = lookup_dims z in

371 let acc_params = List.map (fun el -> (expr builder el)
) params in

372 let get_pos = List.fold_right2

373 (fun p d acc -> (L.build_add p (L.bu
ild_mul (L.const_int i32_t d) acc "tmp" builder) "tmp" builder))

374 acc_params

375 dims

376 (L.const_int i32_t @) in

377 ignore(L.build_store ef (L.build_gep z' [|L.const_int

i32_t @;get_pos|] "tmp" builder) builder); builder

378 in

379 ignore(List.fold_left do_op builder all_pos); L.const_int

i32 .t o

380

381 | _ -> raise (Failure ("Unable to do broadcast operation " ~ b
c_op ~ " on matrices"))

382)

383 | _ -> raise (Failure ("Unable to do operation " ~ op ~ " on matrices
"))

384

385 | A.call ("open", ([e ; e2 1)) ->

386 (L.build_call open_func [| expr builder e;expr builder e2|] "open" build
er)

387 | A.call ("read", ([e ; e2 1)) ->

388 let ev = expr builder e and

389 ev2 = A.string_of_expr e2 in

390 let arrptr = (lookup ev2) in

391 let arrtype = (lookup_type ev2) in

392 let arrsize = (List.fold_left (fun acc el -> acc*el) 1 (lookup_dims ev
2)) in

62

393 let fd = (L.build_call open_func [| ev ; L.const_int i32_t @|] "open"
builder) in

394 let ret = (match arrtype with

395 A.Byte -> (L.build_call readbyte_func

396 [| fd ;

397 (L.build_gep arrptr [|L.const_int i32_
t O;L.const_int i32_t @[] "tmp" builder);

398 L.const_int i32_t (arrsize)|] "read"
builder)

399 | A.Int -> (L.build_call read_func

400 [| fd ;

401 (L.build_gep arrptr [|L.const_int i32_
t 0;L.const_int i32_t @|] "tmp" builder);

402 L.const_int i32_t (arrsize*4)|] "read
" builder)

403 | A.Float -> (L.build_call readfl_func

404 [| fd ;

405 (L.build_gep arrptr [|L.const_int i32_
t O;L.const_int i32_t @[] "tmp" builder);

406 L.const_int i32_t (arrsize*8)|] "read
" builder)

407 | _ -> raise (Failure ("Unable to read into matrix type " ~
(A.string_of_typ arrtype)))

408) in

409 (ignore (L.build_call close_func [| fd |] "close" builder));ret

410 | A.call ("write", ([e; e2])) ->

411 let path = expr builder e and

412 var_name = A.string_of_expr e2 in

413 let arrptr = (lookup var_name) in

414 let arrsize = (List.fold_left (fun acc el -> acc*el) 1 (lookup_dims va
r_name)) in

415 let fd = (L.build_call creat_func [| path ; L.const_int i32_t 438|] "c
reat" builder) in

416 let ret = L.build_call write_func

417 [fd ;

418 (L.build_gep arrptr [|L.const_int i32_
t 0;L.const_int i32_t @|] "tmp" builder);

419 L.const_int i32_t (arrsize)|] "write"
builder

420 in

421 (ignore (L.build_call close_func [| fd |] "close" builder));ret

422 | A.call (f, act) -»

423 let (fdef, fdecl) = StringMap.find f function_decls in

424 let actuals = List.rev (List.map (expr builder) (List.rev act)) in

425 let result =

426 (match fdecl.A.typ with | A.void -> "" | _ -> f ~ "_result")

427 in L.build_call fdef (Array.of_list actuals) result builder in

428 (* Invoke "f builder" if the current block doesn't already

429 have a terminal (e.g., a branch). *)

430 let add_terminal builder f =

431 match L.block_terminator (L.insertion_block builder) with

432 | some _ -> ()

433 | None -> ignore (f builder) in

434 (* Build the code for the given statement; return the builder for

435 the statement's successor *)

436 let rec stmt builder =

437 function

438 | A.Block sl -> List.fold_left stmt builder sl

439 | A.Expr e -> (ignore (expr builder e); builder)

440 | A.Return e ->

63

441 (ignore

442 (match fdecl.A.typ with

443 | A.void -> L.build_ret_void builder

444 | _ -> L.build_ret (expr builder e) builder);

445 builder)

446 | A.If (predicate, then_stmt, else_stmt) ->

447 let bool_val = expr builder predicate in

448 let merge_bb = L.append_block context "merge" the_function in

449 let then_bb = L.append_block context "then" the_function

450 in

451 (add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)
452 (L.build_br merge_bb);

453 let else_bb = L.append_block context "else" the_function

454 in

455 (add_terminal

456 (stmt (L.builder_at_end context else_bb) else stmt)

457 (L.build_br merge_bb);

458 ignore (L.build_cond_br bool_val then_bb else_bb builder);

459 L.builder_at_end context merge_bb))

460 | A.E1if (exprs, stmts) ->

461 (match exprs with

462 [1->

463 (match stmts with

464 [] -> builder

465 | he: ->

466 stmt builder (A.Block [A.Block [(h)]])

467)

468 | >

469 let bool_val = expr builder (List.hd exprs) in

470 let merge_bb = L.append_block context "merge" the_function in
471 let then_bb = L.append_block context "then" the_function

472 in

473 (add_terminal (stmt (L.builder_at_end context then_bb) (List.hd st
mts))

474 (L.build_br merge_bb);

475 let else_bb = L.append_block context "else" the_function
476 in

477 (add_terminal

478 (stmt (L.builder_at_end context else_bb) (A.Elif (List.tl

exprs, List.tl stmts)))
479

(L.build_br merge_bb);

480 ignore (L.build_cond_br bool_val then_bb else_bb builder);
481 L.builder_at_end context merge_bb))

482)

483 | A.while (predicate, body) ->

484 let pred_bb = L.append_block context "while" the_function

485 in

486 (ignore (L.build_br pred_bb builder);

487 let body_bb = L.append_block context "while_ body" the_function
488 in

489 (add_terminal (stmt (L.builder_at_end context body_bb) body)
490 (L.build_br pred_bb);

491 let pred_builder = L.builder_at_end context pred_bb in

492 let bool_val = expr pred_builder predicate in

493 let merge_bb = L.append_block context "merge" the_function
494 in

495 (ignore

496 (L.build_cond_br bool_val body_bb merge_bb pred_builder);
497 L.builder_at_end context merge_bb)))

498 | A.For (el, e2, e3, body) ->

64

499 stmt builder
500 (A.Block
501 [A.Expr el; A.While (e2, (A.Block [body; A.Expr e3]))]) in
502 (* Build the code for each statement in the function *)
503 let builder = stmt builder (A.Block fdecl.A.body)
504 in
505 (* Add a return if the last block falls off the end *)
506 add_terminal builder
507 (match fdecl.A.typ with
508 | A.void -> L.build_ret_void
509 | t -> L.build_ret (L.const_int (ltype_of_typ t) 0))
510 in (List.iter build_function_body functions; the_module)
511
512
numnum.ml
1 (* Top-level of the MicroC compiler: scan & parse the input,
2 check the resulting AST, generate LLVM IR, and dump the module *)
3
4 type action = Ast | LLVM_IR | Compile
5
6 let _ =
7 let action = if Array.length Sys.argv > 1 then
8 List.assoc Sys.argv.(1) [("-a", Ast); (* Print the AST only *)
9 ("-1", LLVM_IR); (* Generate LLVM, don't check *)
10 ("-c", Compile)] (* Generate, check LLVM IR *)

11 else Compile in

12 let lexbuf = Lexing.from_channel stdin in

13 let ast = Parser.program Scanner.token lexbuf in
14 Semant.check ast;

15 match action with

16 Ast -> print_string (Ast.string_of_program ast)

17 | LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate ast))
18 | Compile -> let m = Codegen.translate ast in

19 Llvm_analysis.assert_valid_module m;

20 print_string (Llvm.string_of_llmodule m)

Makefile

Make sure ocamlbuild can find opam-managed packages: first run
#
eval “opam config env’

1
2
3
4
5 # Easiest way to build: using ocamlbuild, which in turn uses ocamlfind
6
7 .PHONY : numnum.native

8

9 numnum.native :

10 ocamlbuild -use-ocamlfind -pkgs 1lvm,llvm.analysis,llvm.bitwriter,llvm.bitread
er,1llvm.linker,1llvm.target -cflags -w,+a-4 \

11 numnum.native

12

65

13 # "make clean" removes all generated files

14

15 .PHONY : clean

16 clean :

17 ocamlbuild -clean

18 rm -rf testall.log *.diff numnum scanner.ml parser.ml parser.mli
19 rm -rf *.cmx *.cmi *.cmo *.cmx *.o0 *.s

20

21 # More detailed: build using ocamlc/ocamlopt + ocamlfind to locate LLVM
22

23 OBJS = ast.cmx codegen.cmx parser.cmx scanner.cmx semant.cmx numnum.cmx
24

25 numnum : $(OBJS)

26 ocamlfind ocamlopt -linkpkg -package 1llvm -package llvm.analysis $(OBJS) -o nu
mnum

27

28 scanner : scanner.mll

29 ocamllex scanner.mll

30

31 scanner.ml : scanner.mll

32 ocamllex scanner.mll

33

34 parser.ml parser.mli : parser.mly
35 ocamlyacc parser.mly

36

37 parser: parser.mly

38 ocamlyacc parser.mly

39

40 %.cmo : %.ml

41 ocamlc -c $<

42

43 %.cmi : %.mli

44 ocamlc -c $<

45

46 %.cmx : %.ml

47 ocamlfind ocamlopt -c -package 1llvm $<
48

49 #it# Generated by "ocamldep *.ml *.mli" after building scanner.ml and parser.ml
50 ast.cmo :

51 ast.cmx :

52 codegen.cmo : ast.cmo

53 codegen.cmx : ast.cmx

54 numnum.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo
55 numnum.cmx : semant.cmx scanner.cmx parser.cmx codegen.cmx ast.cmx
56 parser.cmo : ast.cmo parser.cmi

57 parser.cmx : ast.cmx parser.cmi

58 scanner.cmo : parser.cmi

59 scanner.cmx : parser.cmx

60 semant.cmo : ast.cmo

61 semant.cmx : ast.cmx

62 parser.cmi : ast.cmo

63

64 # Building the tarball

65

66 TESTS = addl arithl arith2 arith3 fib forl for2 funcl func2 func3 \
67 func4 func5 funcé func7 func8 gcd2 gcd globall global2 global3 \
68 hello ifl if2 if3 if4 if5 locall local2 opsl ops2 varl var2 \
69 whilel while2

70

71 FAILS = assignl assign2 assign3 deadl dead2 exprl expr2 forl for2 \

66

72
73
74
75
76
77
78
79
80
81
82
83
84

for3 for4 for5 funcl func2 func3 func4 func5 funcé func7 func8 \
func9 globall global2 ifl if2 if3 nomain returnl return2 whilel \

while2

TESTFILES =

TARFILES =

$(TESTS:%=test-%.num) $(TESTS:%=test-%.out) \
$(FAILS:%=fail-%.num) $(FAILS:%=fail-%.err)

ast.ml codegen.ml Makefile numnum.ml parser.mly README scanner.mll \

semant.ml testall.sh $(TESTFILES:%=tests/%)

numnum-1lvm.tar.gz : $(TARFILES)

cd ..

&& tar czf numnum-1llvm/numnum-llvm.tar.gz \
$(TARFILES:%=numnum-11lvm/%)

67

