CRe€PTAL

Sammy Tbeile | Jaewan Bahk | Michail Oikonomou
Carolina Almirola | Rahul Kapur

- . o
one does not simply encrypl.. -

»
d -

Becasz ll!l BIIOI‘VNIOII right IS hard. Anyone who has added
BII(:I‘YNIIIII Into their systems can tell you that.

Motivation

e Combined interest in the fields of
security and cryptography.

UE T;nATE,I!?“MENTATIIIN * No well-documented or

A R o straightforward languages/packages

7 | that help alleviate the pains of modular
arithmetic and complicated encryption
schemes for users.

NOW.THERE'IS;SOM . .
HAVENT'SEEN INA LON * Given the growing demand for more
| secure systems, a language designed

for ease of implementation of
encryption schemes is a valuable
addition to the field of computer
science and security engineering.

About Our Language

e C-like syntax
e Compiles to LLVM
* Built-in types for modular integers and large numbers:

e Gems: The gem type consists of a value and a
modular value. All operations performed on a gem are
done as modular arithmetic.

e [attices: Built-in representation for large numbers.

e |ntegers: The same integers we know and love from C.

* Mixed operations between gem, int, and lattice make
arithmetic straightforward and remove burden from users
of keeping track of numerical limits.

Special Features

e Modular Arithmetic:
* Arithmetic operations on gems maintain modular state
e Addition, Subtraction, Power, Multiplication, Division
* Modular Inverse:
e Intuitive syntax for obtaining the modular inverse of a number
e example:
gem a = (3, 5)

gem b = la
print_gem(b)

>> 2

e Built-in MD5 Hashing
* Print:

e print_gem and print_1lat allow for direct printing to stdout of gem
and lattice values.

Y'ALL GOT

ANYMORE OF THEM
;|

e \We use openssl’s BIGNUM
library to implement arithmetic
between gems and lattices.

e Modular arithmetic operations
are defined in crypto_arith.c

e codegen.ml uses these
functions

Proposal
+

LRM

I/ALREADY KNOW IT'S{GOINGITOJFAIL

1 JUSTINEED,TO KNOW WHERE

The Game Plan

Expressions
+
Built-in
Types

Hello World!

Implementation
First drafts of of expressions
parser, scannet, and statements
ast, semant, & +
codegen Operations on
built-in types

Encryption
Schemes

Implement some
well known
schemes using
our new
language

E\IEHY GROUP PHOIEGT

DOES 99% GDINB ‘0

. HELP BUT
REWORK HES NOT

' BEGINNING A
z El:A's‘ ::rs | notsvn SIIII
GOINGONTHEW = T“.:’; vﬁ%;

WHOLE TIME

INSCHOOL YOU HAVE EVER DONE

Roles/Responsibilities

e Sammy (System Architect):
e |ntegration of openSSL and BN in Codegen.
e Implementation of expressions and built-in functions.
* Jaewan (Language Guru/Tester):
e Semantic checking and language documentation and specification.
e Testing
e Made the logo!
e Michail (System Architect/Tester):

o Implementation of expressions and statements and built-in functions

e Testing for continuous integration.

e Carolina (Manager):
e Semantic checking for mathematical expressions and statements.
e Language documentation and Final Report.

e Rahul Kapur (Tester):

e Test suite and continuous integration.

RKS!E

int main(){
int a;
int
int
int
gem

lat x_scratch;

gem y;
lat y_scratch;

Z;

= 7/

b = 4;
mod_b = 8;

x = (2, mod_a);
y = (3, mod_b);

Ix;
ly;

x_scratch
y_scratch

z = (x_scratch % a *x mod_b + y_scratch % b % mod_a, (mod_a * mod_b));
print_gem(z);

gem sign_alice_exponent(gem a gem sign_bob_exponent(gem b) {
lat alice_secret_exponent; lat bob_secret_exponent;
gem alice_message_signed; gem bob_message_signed;

alice_secret_exponent = 3; bob_secret_exponent = 4;
alice_message_signed = a x* alice_secret_exponent; bob_message_signed = b *xx bob_secret_exponent;

return alice_message_signed; return bob_message_signed;

int main() {
lat PRIME;
lat NUM;

gem alice_message;
gem bob_message;

= 15485863;
32452843;

PRIME
NUM =

alice_message = (NUM, PRIME);
alice_message = sign_alice_exponent(alice_message);

bob_message = (NUM, PRIME);
bob_message sign_bob_exponent(bob_message);

if (sign_alice_exponent(bob_message) == sign_bob_exponent(alice_message)) {
print("Diffie-Hellman Key Exchange Successful");

} else {
print("Diffie-Hellman Key Exchange Failed");

}

return 0;

lat gcd(lat a, lat b) {
gem rem;
rem = (a, b);
while (rem !'= 0) {
a = b;
b = rem;
rem = (a, b);
}

return b;

}

int main() {

print_lat(g);

hash-md>S.crp

int main() {
lat a;

a = hash_md5("hello_world");

print_lat(a);

