//’ A~ ® 7N N

BURGer

Bringing Undergraduate Residents Greater Evaluative Reasoning

Team Members:
Jordan Lee (jal2283) Manager
Jacqueline Kong (jek2179) Language Guru
Adrian Traviezo (aftz115) Systems Architect
Ashley Nguyen (akn2121) Tester

COMS W4115: Programming Languages and Translators
Fall 2017

Table of Contents

Table of Contents

1. Introduction

2. Language Tutorial

2.1 Environment Setup

2.2 Using the Compiler
2.3 Writing Programs

2.3.1 Hello World!

2.3.2 Variable Declarations
2.3.3 Functions

2.3.4 If/Else

2.3.5 Loops

2.3.6 Recursion

3. Language Reference Manual

3.1 Lexical elements

3.2

3.3

3.1.1 Identifiers
3.1.2 Comments

3.1.3 Keywords, Symbols, and Operators

Keywords
Symbols and Operators
3.1.4 Constants
3.1.4.1 Integer constants
3.1.4.2 Boolean constants
3.1.5 Strings
Data Types
3.2.1 Primitive Types
3.2.2 Non-primitive Types
Expression and Statement Syntax
3.3.1 Operators
3.3.1.1 Relational Operators
3.3.1.2 Equality Operators
3.3.1.3 Logical Operators
3.3.1.4 Assignment Operator
3.3.1.5 Arithmetic Operators
3.3.1.6 Operator Precedence
3.3.2 Delimiters
3.3.2.1 Parentheses

.

Vi

[e<Ie <IN BEEN I =) UiNe Nle) N0, B SIS |

© O O o © O L

bk ek ek ped e e ped b d pd e
- 2 B E 2B E OO0 OCO©OCO OO O OoC oo

3.3.2.2 Whitespace
3.3.2.3 Semicolons

3.3.3 Declaration and Initialization of Variables and Functions

3.3.3.1 Variable Declaration
3.3.3.2 Variable Initialization
3.3.3.2 Functions
3.3.4 Built-in Functions
3.3.5 Control Flow Expressions
3.3.5.1if...else statements
3.3.5.2 while loops
3.3.5.3 return statements
3.4 Program Structure and Scope Rules
3.4.1 Program Structure
3.4.2 Scope
3.4.2.1 Globals
3.4.2.2 Locals
3.5 Grammar

4. Project Plan
4.1 Planning Process
4.2 Specification Process
4.3 Development Process
4.4 Testing Process
4.5 Programming Style Guide
4.6 Project Timeline
4.7 Roles & Responsibilities
4.8 Software Development Environment
4.9 Project Log

5. Architectural Design
5.1 Major Components
5.2 Interfaces Between Components
5.3 Division of Labor

6. Test Plan

6.1 Source Code & their Target Language Programs

6.1.1 tests/test-hello.bun
6.1.2 tests/test-assigni.bun
6.1.3 tests/test-fib.bun
6.2 Test Suites Used
6.3 Significance of Chosen Test Cases
6.4 Test Automation
6.5 Division of Labor

11
11
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13

15
16
16
16
16
18
19
19
20
20

21
21
22
22

22
23
23
23
24
26
26
27
29

7. Lessons Learned

7.1 Jordan

7.2 Jacqueline

7.3 Adrian

7.4 Ashley

7.5 Advice for Future Teams

8. Appendix with Code Listings

8.1 scanner.mll

8.2 parser.mly

8.3 ast.ml

8.4 semant.ml

8.5 codegen.ml

8.6 burger.ml

8.7 stdlib.c

8.8 demo.bun (sample code)

8.9 Makefile

8.10 burgr.sh (compiling + runtime script)

8.11 burgr-c.sh (compiling script)

8.12 testall.sh (automated testing script)

8.12 Test Cases
fail-assigni.bun
fail-dup1.bun
fail-expri.bun
fail-expr2.bun
fail-funci.bun
fail-func2.bun
fail-funcs.bun
fail-func4.bun
fail-func6.bun
fail-func7.bun
fail-func8.bun
fail-if.bun
fail-var1.bun
fail-while1.bun
test-assigni.bun
test-assign2.bun
test-commi.bun
test-fib.bun
test-funci.bun
test-funcz.bun

29
30
30
30
30

31

o oo O o DD U1 VI UL B W W W W W
wwNNNE\S\QSE\S\OOOOOO\OOOOUIS}-PNEOOWOOO\WNN

test-funcs.bun
test-func4.bun
test-funcs.bun
test-globali.bun
test-hello.bun
test-if2.bun
test-if3.bun
test-if4.bun
test-ifs.bun
test-init1.bun
test-init2.bun
test-mathi.bun
test-mathz.bun
test-opsi.bun
test-ops2.bun
test-ops3.bun
test-print.bun
test-println.bun
test-scope1.bun
test-vari.bun
test-var2.bun
test-while1.bun
test-while2.bun

63
64
64
65
65
65
66
66
66
67
67
67
67
68
68
68
69
69
69
69
70
70
70

1. Introduction

BURGer is a general purpose programming language designed for convenient, intuitive use. By
using a program structure similar to Python while adhering to conventions familiar to users of
Java and C, programmers using BURGer can write strongly-typed code with the flexibility
afforded by top-level code. It is intended to be lightweight and easily readable for users who
are familiar with the syntax and types available in popular programming languages, by
supporting common data types (ints, booleans, strings), control flow, and user-defined
function behavior.

Like any good hamburger, BURGer is an amalgamation of different flavors and ideas from
discrete sources with the intent to please a diverse user base. It integrates, for example,
variable declarations inspired by C with the String type available in other languages, without
requiring a main function. BURGer aims to bridge similar gaps between a variety of languages
with a lightweight but powerful set of operators and features.

2. Language Tutorial

2.1 Environment Setup

Before writing a program in BURGer, you’ll need to download the files associated with the
language. They can be accessed on Github at the following link:
https:/github.com/jacquelinekong/BURGer

BURGer was developed with LLVM.5.0.0 and OCaml 4.05.0, so in order to have your programs
run correctly, please make sure those versions are installed on your machine.

2.2 Using the Compiler
Once you have the BURGer project files as well as OCaml and LLVM installed, you can navigate
to the BURGer/src directory. Programs written in the BURGer language have a file extension
of .bun. You can run the following commands:
e To build the compiler:
make

e To compile a .bun file:

./burgr-c.sh <name of .bun file>

V1

e To compile and run a BURGer program:
./burgr.sh <name of .bun file>
Example of commands used to run a program in usr/BURGER/src/hamburgers.bun:

make
./burgr.sh hamburgers

2.3 Writing Programs

Writing programs in BURGer is very similar to writing programs in Java, C, and Python. Like
Java and C, BURGer is strongly typed. Like Python, the programmer does not need to declare a
main function and uses the de £ keyword to declare functions.

2.3.1 Hello World!

hello-word.bun:

print (“Hello World!\n”);
string s = “hello world”;
println(s);

Output:
Hello World!
hello world

This program demonstrates the use of the built-in print and print1n functions, as well as
variable initialization. In the first line of the code, the print function recognizes the \n in the
string literal “Hello World!\n” as a newline character. In the second, the variable of type
string, s, is assigned the string literal “hello world”. The print1n function is passed in the
identifier s, prints “hello world”, and then appends a new line to it.

2.3.2 Variable Declaration and Initialization

test-assign.bun:
int x;

X = 23

bool y = true;
int z;

bool zero;
println (x);
V)i
z);

println (zero) ;

println (
println(
(

Output:

o O

This program demonstrates a mix of approaches for variable declarations in BURGer. As
shown in the first two lines of test-assign.bun, a variable can be declared on one line and then
assigned a value on another line. Or, a value can be declared and instantiated to a value in the
same line. Types of bool and int can be declared but never initialized by the programmer,
and their value will return o.

2.3.3 Functions

test-funci.bun:

def int add(int a, int b) {
println ("add numbers!");
return a + b;

}

println(add (1, 3));

Output:
add numbers!
4

This program demonstrates function declaration in BURGer. A user-defined function is
declared with the def keyword, followed by the return type of the function, its identifier
(name), and a comma-separated list of arguments. The function is called at the end of
test-funci.bun in order to execute it.

2.3.4 If/Else

test-if.bun:
if (true) {
int x;
println("fff");
}
1if(1 < 0)¢{
println ("YES");
}
else/{
println ("NO") ;

Output:
fff
NO

This is a typical use of control flow in BURGer. An i f statement tests a boolean and executes
the statement enclosed in its brackets if the boolean returns true. It can be followed by an
else clause, which executes if the boolean is false, but it need not be.

2.3.5 Loops

test-while.bun:

int 1i;

i = 0;

while (1<3) {
println ("yum") ;
println ("burgers") ;
i = 1i+1;

Output:
yum
burgers
yum
burgers
yum
burgers

This is a typical use of a loop in BURGer. As long as the boolean indicated in parentheses
evaluates to true at the end of the block within curly braces, that block will execute again.

2.3.6 Recursion

test-fib.bun:
def int fib(int x) {
if (x < 2) return 1;
return fib(x-1) + fib(x-2);
}
println (£fib (3));

Output:
3

This program demonstrates BURGer’s support for recursion and calling functions within other
functions by running the code corresponding to the algorithm for the Fibonacci sequence.

3. Language Reference Manual

3.1 Lexical elements

3.1.1 Identifiers

Identifiers are used for naming data types. Identifiers consist of any combination of
alphanumeric characters. The first character of an identifier must be a letter.

3.1.2 Comments

Comments are denoted like so:
/* text

wow look at me

multiple lines
incredible */

3.1.3 Keywords, Symbols, and Operators

Keywords

if int
else bool
while string
def true
return false
null

Symbols and Operators

+ / < == §& S >=
- % > . N = =
* ' <= () o ! ;

3.1.4 Constants

3.1.4.1 Integer constants

An integer constant consists of one or more digits. Integers are optionally signed and default
to positive if they are unsigned.

3.1.4.2 Boolean constants

Boolean constants can be true or false, which respectively correspond to logical true and
false values.

3.1.5 Strings

A string is a sequence of characters enclosed in single or double quotes. BURGer strings are
mutable and iterable.

3.2 Data Types

3.2.1 Primitive Types

There are three primitive data types: int, bool, and null. Numbers are denoted as an int
type, which stores up to 4 bytes. bool holds a Boolean value of either t rue or false.
null is a type used for uninitialized variables.

3.2.2 Non-primitive Types

Strings, as discussed in Section 1.5, are a non-primitive type supported in BURGer.

3.3 Expression and Statement Syntax

3.3.1 Operators

3.3.1.1 Relational Operators

BURGer has the following relational operators:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

3.3.1.2 Equality Operators

BURGer has the following equality operators:
== equals
= not equals

10

3.3.1.3 Logical Operators

BURGer has the following logical operators:
& and
| or
! not

3.3.1.4 Assignment Operator

The = binary operator sets the left operand equal to the right operand.

3.3.1.5 Arithmetic Operators

BURGer supports the standard arithmetic operations:

+ addition

- subtraction

* multiplication
/ division

% modulo

3.3.1.6 Operator Precedence

The order of precedence for classes of operators is as follows, from the highest to the lowest:
arithmetic, logical, assignment, equality/relational. Equality and relational operators have the
same level of precedence. For arithmetic operations, multiplication and division take
precedence over addition and subtraction.

Expressions contained within parentheses always take precedence. Otherwise, operators of
equal precedence levels will take precedence from left to right.

3.3.2 Delimiters

3.3.2.1 Parentheses

BURGer uses parentheses to determine the operation precedence and for enclosing function
calls.

3.3.2.2 Whitespace
BURGer uses whitespace to determine separate tokens. However, the amount of whitespace

has no other bearing on the language.

3.3.2.3 Semicolons

BURGer uses semicolons to terminate statements.

11

3.3.3 Declaration and Initialization of Variables and Functions

3.3.3.1 Variable Declaration

Variables are declared with the desired type of the variable and the variable name. For
example:

int x; bool y; string z;

3.3.3.2 Variable Initialization

int x; int x = 42;
x = 42;
Figure 3.3.3.2a Figure 3.3.3.2b

Variables can be initialized in a separate assignment statement after being declared, like in
Figure 3.3.3.2a. However, they can also be declared and initialized in the same statement, as
shown in Figure 3.3.3.2b.

3.3.3.2 Functions
A function is declared with the de f keyword, a function name, and a list of parameters
between parentheses. The return type of the function and of its parameters are not specified

on declaration, but a function that does return a value is assigned that return type. A function
may be declared with curly braces specifying what the function does, like so:

def int adder (x, vy) {
return x + y;

}i

3.3.4 Built-in Functions

BURGer uses the print () function to print a string literal, or an identifier that has been
assigned a string literal, to the console. The print1n () has an identical functionality, but
appends a new line character to it. These functions reside in stdlib.c, and are called from
within codegen.ml using L..declare function. The stdlib.c file is then linked into the
BURGer environment during compilation.

3.3.5 Control Flow Expressions

3.3.5.1 if...else statements

BURGer uses the if else statements in a similar way to other languages. It’s possible to nest
these statements as well.

12

if(conditional expression) { statement; } else { statement; }

3.3.5.2 while loops

BURGer performs while loops with the same syntax as Java.
while (conditional expression) { statement; }

3.3.5.3 return statements

BURGer uses the return statement to return values from a function. These values can be of
any data type, including null.

3.4 Program Structure and Scope Rules

3.4.1 Program Structure

A BURGer program must be contained in a single source file with a .bun file extension.

3.4.2 Scope

BURGer is a statically scoped language. An object is not visible to any operations or
declarations that have come before it - for example, a variable x, may not form part of the
declaration of x, unless x, was previously formally declared. The scope of a global variable is
the entire file, and the scope of a local variable is the block of code pertaining to the function in
which is was initialized. Functions can only be defined in a global context; a function can be
called, but not defined, within another function.

3.4.2.1 Globals

Global variables may be declared independently of any code block - as in, they do not need to
exist within any function or as part of another declaration. By convention, they should be
declared at the top of the file. These variables are visible from any point of the file.

3.4.2.2 Locals

Local variables are visible only from within the function where they are defined. If a helper
function must access a variable declared in the outer function from which it is called, the
variable must be passed into the helper function as a parameter.

3.5 Grammar

program — item list EOF
item list -

/* nothing */

| item list item

item - stmt | fdecl

13

typ — INT | BOOL | STRING | NULL

/*** Statements ***/
stmt -
expr SEMI

| vdecl SEMI

| RETURN expr SEMI

| RETURN SEMI
| LBRACE stmt list RBRACE
| IF LPAREN expr RPAREN stmt %prec NOELSE
| IF LPAREN expr RPAREN stmt ELSE stmt
| WHILE LPAREN expr RPAREN stmt

stmt list -
stmt
| stmt list stmt

/*** Expressions ***/
expr -
MINUS expr
NOT expr
ID ASSIGN expr
expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr

LPAREN expr RPAREN
ID LPAREN actuals opt RPAREN

|

|

|

|

|

|

| expr MOD expr
| expr EQ expr
| expr NEQ expr
| expr LT expr
| expr LEQ expr
| expr GT expr
| expr GEQ expr
| expr AND expr
| expr OR expr
| INTLIT

| TRUE

| FALSE

| ID

| STRINGLIT

|

|

/*** Variable Declarations ***/

14

vdecl —
typ ID
| typ ID ASSIGN expr

/*** Function Declarations ***/
fdecl -

DEF typ ID LPAREN formals opt RPAREN LBRACE stmt list RBRACE

formals opt -
/* nothing */
| formal list

formal list -
typ ID
| formal list COMMA typ ID

actuals opt -
/* nothing */
| actuals list

actuals list -

expr
| actuals list COMMA expr

15

4. Project Plan

4.1 Planning Process

Our team met once a week after class on Mondays to work on the project and subsequently
met with Freddy, our TA, on Tuesdays at the beginning of his office hours. Sometimes we
scheduled extra meetings over the weekend if there was more work that we wanted to get done
before our next meeting with Freddy. We would use our time on Mondays to set goals that we
wanted to complete by our next meeting, work on tasks according to our project timeline,
delegate tasks that we each needed to work on individually, and come up with questions that
we could ask Freddy when we met with him the next day.

As soon as we solidified the members of our team, we created a Google Drive folder where we
could store notes from all of our meetings, questions for Freddy, and all of our required
documentation (the project proposal, language reference manual, etc.).

4.2 Specification Process

At first, we considered doing a poetry generation language or a language that would support
server-based multiplayer games. However, after discussing these ideas with some of the TAs,
we realized that our ideas were incredibly ambitious and would probably not be able to be
completed within the timeframe of this class. We decided that we would try to build a
text-based adventure game language but underestimated how long it would take to implement
as many features as we had described in our Language Reference Manual. In the end, we scaled
back to a general purpose programming language that combined Java-like syntax with
Python-like top-level code.

4.3 Development Process

When we began code development, we would usually meet up and code together, especially
since we were just starting to become familiar with OCaml. As we became more familiar with
the language, we would delegate tasks to be done individually and come back together to
discuss any issues that cropped up. Near the end of the process, we started pair programming
and realized that this method of working helped increase our productivity significantly.

After we received feedback on our Language Reference Manual, we revised our grammar
significantly. Then we worked on completing the front end of the compiler, mainly our
scanner, parser, and AST. Once we successfully compiled Hello World, we began working on
implementing function declarations, and then fleshed out other features such as operators,
more robust printing functions, and control flow.

16

4.4 Testing Process

In the beginning of our testing process, we were focused on making sure our grammar was
correct and unambiguous. We were able to check this using ocamlyacc to check for ambiguities
and parsing particular strings using menhir. For example when we passed in the following
tokens, we would receive the tree below which would be compared to the tree we created by
hand.

ID LPAREN STRINGLIT RPAREN SEMI

ACCEPT
[program:
[item list:
[item list:
[item:
[stmt:
[expr:
[arith expr:
[arith term:
[atom:
1D
LPAREN
[actuals opt:
[actuals list:
[expr: [arith expr: [arith term: [atom:
STRINGLIT]]1]

]
RPAREN

Our test cases were written in BURGer and focused on both positive and negative testing. We
had a separate folder that contained all of the test cases that could be executed by calling
“make” and running “/testall.sh”. Since we had a standard library in written in C, the testall
script was modified to include linking the outside resources. Each of the positive test cases had

17

a corresponding .out file which would be compared to the output of the .bun file using the
print function. The negative test cases had a corresponding .err file that would come from
checks created in semant.

4.5 Programming Style Guide

We all used the Atom text editor, which handily supported packages like language-ocaml and
ocaml-indent. Those helped us more easily read syntax and use effective indentation.

Tab size: 2

Commenting convention:

All comments should be separated by a space from the opening and closing comment symbols.
For example,

/* comment */ Or (* comment *)

Multi-line comments should be written as follows:

/* beginning of comment (* beginning of comment
* more comment * more comment
* end of comment */ oOr * end of comment *)

Parser rule convention:
rule name:
patternl { actionl }

| pattern2 { action2 }
The first pattern for each parser rule appears on the line below the rule name, tabbed and with
two spaces before it. All patterns after that have a tab before the |, and a space before the
pattern. Actions should align vertically with each other, meaning that for each parser rule, all
actions will be left-aligned one space to the right of the lengthiest pattern in that rule.

When a rule accepts an empty string, the matching pattern should be denoted with a
commented-out “nothing,” as follows:

rule name:

/* nothing */ { [] }
| patternl { actionl }
| pattern? { action2 }
AST type convention:

type some type =
Namel of typel
| Name2 of type?2
For AST types with multiple patterns, each name will begin with a capital letter. AST types with
only one possible pattern can be written on one line, if desired.

18

OCaml coding convention:

Align Ocaml declarations and assignments as follows:

let example =

(* example code *)

in

If a declaration is bound using the in keyword, it should align with the 1et keyword used to
declare the function/variable. The body of functions should be indented with one tab.
However, if the body of the assignment consists of only one line, it may occur on the same line

as the declaration.

In some cases, the in may also occur on the same line as the body, for instance in a

pattern-matching clause.

Use comments as necessary to explain specific portions of the code, and when raising
exception messages, be as specific as possible.

4.6 Project Timeline

This was our projected timeline at the beginning of the project.

Dates

Goals

September 18-25

Assemble team members and develop language idea

September 26 Submit Proposal
October 16 Submit Language Reference Manual
November 7 Finish “Hello World”

November 21

Finalize language features (scanner, parser, AST) and add more to
codegen, especially function declarations

November 28

Finish semantic checking and initial tests

December 5

Finish codegen and C standard library

December 12

Finish test suite

December 18-20

Present Final Presentation

December 20

Submit Final Report

19

4.7 Roles & Responsibilities

Team Member Role
Jordan Lee Manager
Jacqueline Kong Language Guru
Adrian Traviezo Systems Architect
Ashley Nguyen Tester

The above table shows the assigned roles that we determined at the beginning of the project.
Because of these assignments, we each did become more specialized in our respective areas.
However, as we continued to develop our language, these roles became more fluid and our
responsibilities were not necessarily restricted to our roles. This was especially evident after
we started pair programming, which not only upped our productivity but also broadened our
knowledge of different areas of our language.

4.8 Software Development Environment

We used LLVM version 5.0.0 and OCaml version 4.05.0. All of us had Mac OS X (different
versions, however - Yosemite, Sierra, and High Sierra). We stored our project files in a git
repository on GitHub and used Google Drive to store documentation (Proposal, LRM, meeting
notes, etc.). Our text editor of choice was Atom, which supported some handy OCaml packages
that assisted with syntax highlighting. This was especially helpful as we gradually learned to
program effectively in OCaml.

4.9 Project Log

Dates Task

September 18-25 Assembled team members and develop language idea

September 26 Submitted Proposal

October 15 Initial commit created in git repository

October 16 Submitted Language Reference Manual

October 27 Committed scanner and parser

November 10 Successfully compiled “Hello World”

November 25 FiI(lialized language features (scanner, parser, AST) and flesh out
codegen

20

November 28

Finish semantic checking

December 5

Finish codegen and C standard library

December 12

Finish test suite

December 18-20

Present Final Presentation

December 20

Submit Final Report

21

5. Architectural Design

5.1 Major Components

Here is a block diagram showing the major components of our compiler.

.bun program | Scanner

l Tokens

AST

Semantic
Checking

l SAST

LLVM IR

stdlib.c —» GCC

l

BURGer
Executable

22

5.2

(2 §

5.3

Interfaces Between Components

.bun program
1.1. This is the source code for the program that is to be compiled in the BURGer
language.
Scanner
2.1. This component, defined in scanner.ml, handles the conversion of the input
.bun file into a form that can be processed by the rest of the compilation
process. The scanner generates a stream of tokens out of the text in the .bun file
that will be parsed by the parser.
Parser
3.1. This component, defined in parser.mly, processes the stream of tokens passed
to it by the Scanner and creates an AST (Abstract Syntax Tree) as specified by
the grammar rules written in it and the types in ast.ml.
Semantic Checker
4.1. The semantic checker, located in semant.ml, opens the AST generated by the
parser and ensures that the .bun file that is being processed contains a valid,
semantically correct, program. It does so by performing type checking and
raising errors when there are invalid parts of code that, for example, declare the
same variable twice. After the AST is semantically checked, it is passed on to the
code generation step.
Code Generation
5.1. Once the .bun file is checked and it is verified that it contains a semantically
correct program, the generated syntax tree is processed by codegen.ml. This file
contains the code that converts types like ints and booleans to native LLVM
primitives and builds LLVM blocks out of statements. LLVM Intermediate
Representation is then generated to the burger.native file.
GCC
6.1. This is the component that links the aforementioned files together. The GCC
Compiler system is used to produce an output binary file and links the stdlib.c
(Standard Library) file so that the built-in functions can be defined within the
generated code.
BURGer Executable
7.1. Once a .bun file successfully travels through the previous steps, a binary file is
created by GCC and is ready to run. See section 2.2 for how to run this file.

Division of Labor

See Section 6.5: Division of Labor.

23

6. Test Plan

6.1 Source Code & their Target Language Programs

6.1.1 tests/test-hello.bun

print ("Hello World!'") ;

tests/test-hello.ll

; ModuleID = 'BURGer'
source filename = "BURGer"

@fmt = private unnamed addr constant [4 x i8] c"%d\0A\00"
@fmt.1 = private unnamed addr constant [3 x i8] c"%d\00"

@str private unnamed addr constant [13 x i8] c"Hello World!'\0O"
declare i32 Qprint(i8*, ...)

declare i32 QRprintf (i8*, ...)

declare i32 Qprintln(i8*, ...)

define i32 @main() {

entry:

gprint = call i32 (i8%*, ...) @print(i8* getelementptr inbounds ([13
x i8], [13 x i8]* @str, i32 0, i32 0))

ret i32 0
}

6.1.2 tests/test-assigni.bun

int x;

bool y;

X = 2;

y true;
print("x = ") ;
println(x) ;
print("y = ")/
println(y) ;

tests/test-assignz.ll

24

; ModuleID = 'BURGer'
source filename = "BURGer"

@x = global i32 0
@y = global il false

@fmt = private unnamed addr constant [4 x i8] c"%d\0A\00"
@fmt.1 = private unnamed addr constant [3 x i8] c"%d\00"
@str = private unnamed addr constant [5 x i8] c"x = \00"
@str.2 = private unnamed_addr constant [5 x i8] c"y = \0O"
declare i32 Qprint(i8*, ...)

declare i32 Qprintf (i8*, ...)

declare i32 Qprintln (i8*, ...)

define i32 @main() {
entry:

store i32 2, i32* (@x

store il true, il* Qy

$print = call i32 (i8*, ...) @print(i8* getelementptr inbounds ([5
x i8], [5 x i8]* @str, i32 0, i32 0))

$x = load i32, i32* @x

$printl = call i32 (i8*, ...) (@printf(i8* getelementptr inbounds
([4 x i8], [4 x i8]* Q@fmt, i32 0, i32 0), i32 %x)
gprint2 = call i32 (i8*, ...) @print(i8* getelementptr inbounds ([5

x i8], [5 x i8]* @str.2, i32 0, i32 0))
$y = load il, il* Qy

$print3 = call i32 (i8*, ...) @printf (i8* getelementptr inbounds
([4 x i8], [4 x i8]* Q@fmt, i32 0, i32 0), il %y)
ret i32 0

6.1.3 tests/test-fib.bun

def int fib(int x)
{

if (x < 2) return 1;

return fib(x-1) + £fib (x-2);
}

println(£ib(0)) ;
println(£fib(1)) ;
println(£fib(2)) ;
println(£ib(3)) ;
println(fib(4)) ;
println (£ib(5)) ;

println("Fibonacci test over!");

tests/test-fib.ll

; ModuleID = 'BURGer'
source filename = "BURGer"

@fmt = private unnamed addr constant [4 x i8] c"%$d\0A\00"
@fmt.1 = private unnamed addr constant [3 x i8] c"%d\00"

@str = private unnamed addr constant [21 x i8] c"Fibonacci test
over!\00"

@fmt.2 = private unnamed addr constant [4 x i8] c"%d\0A\00"
@fmt.3 = private unnamed addr constant [3 x i8] c"%d\00"

declare i32 Qprint(i8*, ...)
declare i32 QRprintf (i8*, ...)
declare i32 Qprintln(i8*, ...)

define i32 @main() {

entry:
$fib_result = call i32 @fib(i32 0)
$print = call i32 (i8*, ...) @printf (i8* getelementptr inbounds ([4

x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib_result)

$fib_resultl = call i32 @fib(i32 1)

gprint2 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib_resultl)

$fib_result3 = call i32 @fib(i32 2)

$print4 = call i32 (i8*, ...) @printf (i8* getelementptr inbounds
([4 x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib_result3)

%fib _result5 = call i32 @fib(i32 3)

$print6 = call i32 (i8*, ...) (@printf(i8* getelementptr inbounds
([4 x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib_result))

$fib_result7 = call i32 @fib(i32 4)

$print8 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds
([4 x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib result7)

$fib_result9 = call i32 @fib(i32 5)

%printl0 = call i32 (i8*, ...) Q@printf(i8* getelementptr inbounds
([4 x i8], [4 x i8]* @fmt, i32 0, i32 0), i32 %fib result9)

$println = call i32 (i8*, ...) (@println(i8* getelementptr inbounds
([21 x i8], [21 x i8]* @str, i32 0, i32 0))

ret i32 0

}

define i32 @fib(i32 %x) {
entry:

$x1 = alloca i32

store i32 %$x, i32* %x1

26

}

merge: ; preds
$x3 = load i32, i32* %$x1
$tmp4 = sub i32 %x3, 1
%fib_result = call i32 @fib(i32 %tmp4)
$x5 = load i32, i32* %x1
%$tmp6 = sub i32 %x5, 2
$fib_result7 = call i32 @fib(i32 %tmpé6)
%tmp8 = add i32 %fib result, %fib result?7
ret i32 %$tmp8

then:
ret i32 1

else:
br label %merge

$x2 = load i32, i32* %x1
$tmp = icmp slt 132 %$x2, 2
br il %tmp, label %then, label %else

%else

; preds %entry

; preds gentry

0.2

Test Suites Used

See Appendix, Section 8.12: Test Cases for the full list of test suites.

0.3

Significance of Chosen Test Cases

We tested for the syntax and the various features of our language and made sure that each new
addition to our language would be compatible with the rest.

Assignment Operators

Assignment operators were used to test and make sure our primitive data types (int,
string, bool, and null)were strongly typed as well as checking that variable
initialization was possible.

Control Flow

Control flow statements were tested to make sure our if, if/else, and while statements
worked. There were also negative test cases that would return an error if boolean
values were not passed into the function.

Binary Operators

Binary operators were tested by comparing two values and making sure the correct
response was returned by the file. Additionally, the arithmetic operators were tested by
performing the calculations and making sure they matched with the expected output.

27

0.4

Unary Operators
Unary operators were tested by checking to see they followed their intended purposes
by negating with (!) for logical expressions or (-) for numbers.

Built-in functions

Built-in functions such as print() and println() were also tested to make sure that print()
would simply output a value, whereas println() would output a value appended with a
new line. They were also checked in semant.ml so no one function could be defined
using those names.

Comments

Comments were tested by adding them throughout the programs using the convention
/* Testing Comments */ or (* Testing Comments *) to make sure it would not affect the
code written

Top Level Code
Top level code was also checked by making sure programs were able to run without a
main function and that a main function could not be declared in the file.

Function Calls
Function calls were tested to make sure the correct values were passed in and returned.
The negative testing ensured that no null values would be passed into the function.

Static Scoping

Static scoping was tested by assigning variables globally and checking to make sure the
correct output was given after it was changed in a function.

Test Automation

We used a script called testall. sh to automatically run all of our tests and create
user-friendly output that would be easy to read. This was modified from the script used to test
cases for MicroC.

The output when . /testall.sh runsis as follows:

-n
OK
-n
OK
-n
OK
-n
OK
-n

dyn-160-39-173-48:src jordanlee$./testall.sh
test-assignl...

test-assign2...
test-comml. ..
test-£fib. ..

test-funcl. ..

28

test-func2...
test-func3. ..
test-func4. ..
test-funcs. ..
test-globall. ..
test-hello. ..
test-if2...
test-if3...
test-if4...
test-if5...
test-initl...
test-init2...
test-mathl...
test-math2. ..
test-opsl...
test-ops2...
test-ops3...
test-print...
test-println...
test-scopel...
test-varl...
test-var2. ..
test-whilel. ..

test-while2. ..

29

-n fail-assignl...
-n fail-dupl...
-n fail-exprl...
-n fail-expr2...
-n fail-funcl...
-n fail-func2...
-n fail-func3...
-n fail-func4...
-n fail-funceé...
-n fail-func7...
-n fail-func8...
-n fail-if...

-n fail-varl...

-n fail-whilel...

6.5 Division of Labor

While BURGer’s development team had clear roles that corresponded to our individual
responsibilities, the bulk of the code was written and revised by every member of the group
either simultaneously or within our own time. A few contributions that reflect the roles we set
for ourselves, however, are listed below.

Jacqueline ensured that the grammar as defined in our parser was clear and consistent. Adrian
integrated the stdlib.c file, which includes the built-in functions that comprise the standard
library. Ashley, the assigned Tester, created most of the tests and set up the automated testing
script. Jordan wrote the sample code used for our demo and contributed to the testing script
as well, and managed the location and times of our group meetings. All members helped
making the testing more rigorous and wrote some tests.

30

7. Lessons Learned

7.1 Jordan

Functional programming required me to learn a different, eye-opening way to solve problems.
As someone so used to coding in imperative languages, it was hard for me to adjust to coding
in a functional programming language like OCaml at first. However, I feel like I've come away
with a better understanding of how to program more concisely. I also learned the importance
of taking advantage of valuable resources such as the OCaml documentation and llvm.moe.
Discovering and learning from such resources earlier on could have helped me in fulfilling my
managerial role and setting goals for our team. By looking at previous final reports, I would
have had a much better idea of what the scope of our project was and how to plan the work
ahead of us.

7.2 Jacqueline

I had never thought too much about compilers before taking this class, and I have really
enjoyed learning about the compiler pipeline and about functional programming in this
course. Functional programming is a very different paradigm than I'm used to, and my CS
Theory class didn’t cover the Lambda Calculus, so this was definitely an eye-opening
experience for me. I have learned a lot about solving problems functionally vs. imperatively.
Additionally, the process of designing a language and implementing a compiler for it helped
me learn a balance between preparing adequately to create a project and actually building the
project. For instance, it’s worth spending some time on setting up a workable development
environment, but it might not be a good use of time to deliberate for too long on nitpicky
design choices that will probably end up being altered anyway. I also realized the importance
of having a meaningful test suite.

7.3 Adrian

Working on BURGer was perhaps the most educational group project I have experienced at
Columbia. There were many smaller steps in learning to build the compiler that ended up
teaching me more about the bigger picture. Learning how to program in OCaml made me a
stronger programmer all around, since I learned to think about problems from a “functional”
perspective. Understanding how to read assembly code became an invaluable asset in
debugging. And, definitely, hands-on experience with things such as disambiguating
grammars was extremely helpful when learning the material for this class, as well as for
learning important topics about computer science in general.

However, the “bigger picture” I mentioned was probably even more valuable: by taking on a
project so big and out of my comfort zone, I learned more about how to situate myself as part
of a team and as part of a multi-step (and multi-domain) process. Because of BURGer, I gained
experience with navigating the development of a complex product, and with learning to

31

consider all the parts of that complex product both as discrete entities but also with respect to
their importance to each other. I am therefore much more confident approaching not just
compiler design, but projects that would require a similar holistic approach and group
dynamics.

7.4 Ashley

Throughout this project and working on our language I learned a lot more about functional
programming as well as working in a collaborative environment. Using OCaml and LLVM made
the fixing issues a lot different since there is not as much documentation about it and I had to
understand the entire process to debug the errors I was encountering. I also learned a lot
about the importance of continuous integration testing since changing one thing could link to
problems in other files that were never touched. It is definitely something I will be more aware
of in the future as a way to fix errors as the arise making it easier to correct rather than having
it possibly create even more problems as it continues. Using pair programming for the first
time was also a very useful approach, having someone there to bounce ideas off of and help
made things a lot more efficient than everyone working individually. From this I have a much
better understanding about how to work with a group structure while learning a new language
which I will be able to use in the future.

7.5 Advice for Future Teams

Perhaps the most obvious advice we could give here would be to start early. Even though our
team had a good early start with defining our language (in terms of laying out our grammar,
rules, and how we wanted to structure functions and statements), we could have done a little
more research into how all the components of our compiler would integrate with each other
earlier on. Do not expect to learn everything it will take to write your language from lectures;
attending class and studying the slides and textbook will give you a good framework, but if you
wait to read up on code generation until after the midterm, chances are you’ll have some
catching up to do later on. Make use of resources available to you, including MicroC and past
projects (but approach everything with healthy criticism!), and try to really understand what’s
happening in the code holistically.

Another piece of advice we would like to give to future teams is to take time to read as much
documentation about OCaml and LLVM as possible. This is paramount not only to learn about
how to, say, use builders in LLVM or recursion in OCaml, but also to see whether there are
functions that already exist in either that can cut the time you spend writing your own
implementations. Making sure to be well-read on all the different steps of implementing a
compiler is also extremely important—do not try to only be an expert on one aspect of the
pipeline, as being knowledgeable about the entire process (from scanning to parsing to code
generation to, possibly, a standard library) can help when making important design decisions.

32

8. Appendix with Code Listings

8.1 scanner.mll

(*
* Authors:
* Jordan Lee

* Jacqueline Kong
*)

{ open Parser }

let escape = '\\l [l\\l U IR B B B O 't']
let ascii = ([' '='"!''" "#'-'[' '"]1'=-'~"])
let string = ('"') ((ascii | escape)* as s) ('"')

rule token = parse

[" " '\t'" '\r' '\n'] { token lexbuf }
| "/*" { comment lexbuf }
| (" { LPAREN }

I ") { RPAREN }

| ' { SEMI }

| string { STRINGLIT (s) }
I {' { LBRACE }

(I { RBRACE }

| ', { COMMA }

I+ { PLUS }

| - { MINUS }

| '*! { TIMES }

(A { DIVIDE }

I %" { MOD }

| '=' { ASSIGN }

| "< { LT }

"> { GT }

| == { EQ }

| ru= { NEQ }

| "<=" { LEQ }

| ">=" { GEQ }

| "&&" { AND }

[I { OR }

| " { NOT }

| "if" { IF }

| "else" { ELSE }

| "while" { WHILE }

| "true" { TRUE }

| "false" { FALSE }

33

"int" { INT }

"string" { STRING }

"bool" { BOOL }

"null" { NULL }

"return" { RETURN }

"def" { DEF }

['0'-'9']+ as 1lxm { INTLIT(int of string lxm) }
[lal_lzl ‘A‘—‘Z‘]['a'-'z' TA'-'Z' '0'-'9Q" v_v]*

as 1lxm { ID(lxm) }
eof { EOF }

and comment = parse
EYA { token lexbuf }

{ comment lexbuf }

8.2

parser.mly

* F ok F F *

%1{

Parser for BURGer Programming Language
PLT Fall 2017

Authors:

Jacqueline Kong

Jordan Lee

Adrian Traviezo

Ashley Nguyen */

open Ast %}

%token <string> ID
$token <string> STRINGLIT
%token <int> INTLIT

%token LPAREN RPAREN SEMI LBRACE RBRACE COMMA
%$token PLUS MINUS TIMES DIVIDE ASSIGN MOD
$token LT GT LEQ GEQ EQ NEQ

$token AND OR NOT

%token IF ELSE NOELSE

%$token TRUE FALSE

%$token INT STRING BOOL NULL

%token WHILE DEF RETURN

$token EOF

$nonassoc NOELSE
$nonassoc ELSE
$right ASSIGN
$left OR

$left AND

34

%$left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD
$right NOT

%start program
$type <Ast.program> program

%%
/*** Top Level ***/

program:
item list EOF { List.rev $1 }

item list:
/*nothing */ { [] }

| item list item { ($2 $1) }
item:
stmt { Stmt($1) }
| fdecl { Function($1) }
typ:
INT { Int }
| BOOL { Bool }
| STRING { String }
| NULL { Null }

/*** Statements ***/

stmt:

expr SEMI

vdecl SEMI

RETURN expr SEMI

RETURN SEMI

LBRACE stmt list RBRACE

IF LPAREN expr RPAREN stmt %prec NOELSE
IF LPAREN expr RPAREN stmt ELSE stmt
WHILE LPAREN expr RPAREN stmt

stmt_list:
stmt { [$1] }
| stmt_list stmt { ($2 $1) }

/*** Expressions ***/

expr:

Expr ($1) }

$1)

Return ($2) }

Return (NoExpr) }

Block (List.rev $2) }
If($3, $5, Block([])) }
If($3, $5, $7) }

While ($3, $5) }

MINUS expr

NOT expr

ID ASSIGN expr
expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr

Unop (Neg, $2) }

Unop (Not, $2) 1}
Assign($1, $3) }
Binop($1, Add, $3)
Binop($1, Sub, $3)
Binop($1, Mult, $3)
Binop($1, Div, $3)

e et gt St gt gt gt gt

expr MOD expr Binop($1, Mod, $3)
expr EQ expr Binop($1, Equal, $3)
expr NEQ expr Binop ($1, Neq, $3)
expr LT expr Binop($1l, Less, §3)
expr GT expr Binop($1, Greater, $3) }
expr GEQ expr Binop ($1, Geq, $3) }
expr AND expr Binop($1, And, $3) }

expr OR expr

INTLIT

TRUE

FALSE

ID

STRINGLIT

LPAREN expr RPAREN

ID LPAREN actuals opt RPAREN

Binop($1, Or, $3) }
IntLit($1) }
BoolLit(true) }
BoolLit(false) }
Id($1) }

StringLit($1) }

$2 }

{
{
{
{
{
{
{
{
{
{
{
expr LEQ expr { Binop($1, Legq, $3) }
{
{
{
{
{
{
{
{
{
{
{ call($1, $3) }

/*** Variable Declarations ***/
vdecl:
typ ID { VDecl ($1, $2) }
| typ ID ASSIGN expr { VAssign(($1, $2), $4) }

/*** Function Declarations ***/

fdecl:
DEF typ ID LPAREN formals opt RPAREN LBRACE stmt list RBRACE
{ { typ = $2;

fname = $3;

formals = $5;

body = List.rev $8;
}}

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal list:
typ ID { [($1,82)] }
| formal list COMMA typ ID { ($3,$4) :: $1 }

actuals opt:

30

/* nothing */ { [] }
| actuals_list { List.rev $1 }

actuals list:

expr { [$1] }
| actuals_list COMMA expr { $3 :: $1 }
8.3 ast.ml

Abstract Syntax Tree

BURGer Programming Language
PLT Fall 2017

Authors:

Jacqueline Kong

Jordan Lee

Adrian Traviezo

Ashley Nguyen ¥*)

* % F F F F O F

(*** Syntax Types ***)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater
| Geq |
And | Or | Mod

type uop = Neg | Not

type expr =

Id of string
| Call of string * expr list
| IntLit of int
| BoolLit of bool
| StringLit of string
| Assign of string * expr
| Binop of expr * op * expr
| Unop of uop * expr
| NoExpr

type typ = Int | Bool | String | Null | Array of typ * expr
type bind = typ * string

type stmt =
Block of stmt list
| Expr of expr
| VDecl of bind
| Return of expr

If of expr * stmt * stmt

While of expr * stmt

For of expr * expr * expr * stmt
VAssign of bind * expr

type func_decl = ({
typ : typ;
fname : string;
formals : bind list;
body : stmt list;

type item =
Stmt of stmt
| Function of func decl

type program = item list
(*** Functions for Printing **¥)
let string of typ = function
Int -> "int"
| Bool -> "bool"
| Null -> "null"

| String -> "string"

let string of op = function

Add -> "+"
| Sub -> "-"
| Mult -> "*"
| Div -> "/"
| Mod -> "&"
| Equal -> "=="
| Negq -> "!="
| Less -> "<"
| Leq -> "<="
| Greater -> ">"
| Geg -> ">="
| And -> "&&"
| O => "||"

let string of uop = function
Neg _> w_n
| Not -> "I"

let rec string of expr = function
IntLit(l) -> string of int 1
| BoolLit (true) -> "true"
| BoolLit(false) -> "false"

38

| StringLit(s) -> s

| Id(s) -> s
| Binop(el, o, e2) ->
string of expr el ~ " " ” string of op o # " " * string of expr
e2
| Unop(o, e) -> string of uop o * string of expr e
| Assign(v, e) -> v ~# " =" %~ string of expr e
| Call(f, el) ->
£~ "(" * String.concat ", " (List.map string of expr el) * ")"
| NoExpr -> ""

let rec string of stmt = function
Block (stmts) ->
"{\n" ~ String.concat "" (List.map string of stmt stmts) *
"}\n"
| Expr(expr) -> string of expr expr *~ ";\n";
| Return(expr) -> "return " * string of expr expr & W o\ ¢

| If(e, s, Block([])) -> "if (" * string of expr e * "Y\n" 4
string of stmt s
| If(e, s1l, s2) -> "if (" ~ string of expr e ~ ")\n" #

string of stmt sl * "else\n" * string of stmt s2
| While(e, s) -> "while (" ~ string of expr e ~ ") "
string of stmt s

8.4 semant.ml

(* Semantic Checker for the BURGer Programming Language
PLT Fall 2017
Authors:
Adrian Traviezo
Jacqueline Kong
Ashley Nguyen
Jordan Lee
*)

open Ast
module StringMap = Map.Make (String)
(* Semantic checking of a program. Returns wvoid if successful,

throws an exception if something is wrong.
Check each global variable, then check each function ¥*)

let check program program =

(* Raise an exception if the given list has a duplicate ¥*)
let report duplicate exceptf list =

39

let rec helper = function
nl :: n2 :: _when nl = n2 -> raise (Failure (exceptf nl))
| _ :: t -> helper t
I [T -> 0
in helper (List.sort compare list)
in

(* figure out which items are statements and make a list of
statements *)
let stmt list =
let stmts_as items =
List.filter (fun x -> match x with
Ast.Stmt (x) -> true
| _ -> false) program
in List.map (fun x -> match x with
Ast.Stmt (x) -> x
| -> failwith "stmt casting didn't work") stmts_as_items

in

(* after you figure out which items are statements, you need to go
through the statements
and figure out which ones contain the variable declarations and
variable decl+assignment statements ¥*)
let globals =
let global_list = List.filter (fun x -> match x with
Ast.VDecl (x) -> true
| Ast.VAssign(x, _) -> true
| _ -> false) stmt list
in List.map (fun x -> match x with
Ast.VDecl (x) -> x
| Ast.VAssign(x,) -> x
| _ -> failwith "not turned into global") global list
in

let functions =
let functions _as items = List.filter (fun x -> match x with
Ast.Function(x) -> true
| _ -> false) program
in
let all functions _as_items = functions _as_ items
in List.map (fun x -> match x with
Ast.Function(x) -> x
| _ -> failwith "function casting didn't work")
all functions_as items
in

(* let function locals =
let get locals from fbody fdecl =
let get_vdecl locals_list stmt = match stmt with

40

Ast.VDecl (typ, string) -> (typ, string) :: locals_list
| _ -> locals_list
in
List.fold left get vdecl [] fdecl.Ast.body
in List.fold_left get_locals_from fbody (List.hd functions)
(List.tl functions)
in *)

let symbols = List.fold left (fun var _map (varType, varName) ->
StringMap.add varName varType var_map)
StringMap.empty (globals)
in

let type of identifier s =

try StringMap.find s symbols

with Not found -> raise (Failure ("undeclared identifier " * s))
in

(* Raise an exception of the given rvalue type cannot be assigned
to
the given lvalue type *)
let check _assign lvaluet rvaluet err =
if lvaluet == rvaluet then lvaluet else raise err
in

(* Raise an exception if a given binding is to a void type *)
let check not void exceptf = function
(Null, n) -> raise (Failure (exceptf n))
| _ >0

in

let built in decls = StringMap.add "println"
{ typ = Null; fname = "println"; formals = []; body = [] }
(StringMap.singleton "print"
{ typ = Null; fname = "print"; formals = [];
body = [1 })
in

let function decls = List.fold left (fun m fd -> StringMap.add
fd. fname £d m)
built in decls functions
in

let function decl s = try StringMap.find s function decls
with Not found -> raise (Failure ("unrecognized function " *
s))

in

let check function func =

41

report_duplicate (fun n -> "duplicate formal " * n * " in " %
func. fname)
(List.map snd func.formals) ;

if List.mem "print" (List.map (fun fd -> f£d.fname) functions)
then raise (Failure ("function print may not be defined")) else

()

if List.mem "println" (List.map (fun fd -> f£d.fname) functions)
then raise (Failure ("function println may not be defined"))
else (),

if List.mem "printf" (List.map (fun fd -> f£d.fname) functions)
then raise (Failure ("function printf may not be defined"))
else (),

report_duplicate (fun n -> "duplicate function " * n)
(List.map (fun fd -> fd.fname) functions);

if List.mem "main" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function main may not be defined")) else

()

A A

List.iter (check not void (fun n -> "illegal null formal "
" in " * func.fname)) func.formals;

n

(* List.iter (check not void (fun n -> "illegal void local " * n
" in " ~ func.fname)) func.locals; *)

(* report duplicate (fun n -> "duplicate local " * n * " in " *
func. fname)
(List.map snd func.locals); ¥*)
in

let rec expr = function
IntLit _ -> Int
BoolLit _ -> Bool
StringLit _ -> String
Id s -> type of identifier s
Assign(var, e) as ex -> let 1t = type of identifier var
and rt = expr e in
check_assign 1t rt (Failure ("illegal assignment " *
string of typ 1t #
" =" % string of typ rt # " in " %
string of expr ex))
| Binop(el, op, e2) as e -> let tl = expr el and t2 = expr e2 in
(match op with
Add | Sub | Mult | Div | Mod when tl = Int && t2 = Int -> Int

42

| Equal | Neq when tl = t2 -> Bool
| Less | Leq | Greater | Geq when tl = Int && t2 = Int ->

Bool
| And | Or when tl = Bool && t2 = Bool -> Bool
| _ -> raise (Failure ("illegal binary operator " *
string of typ t1 # " " * string of opop *~ " " *
string of typ t2 # " in " * string of expr e))
)
| Call(fname, actuals) as call -> let fd = function_decl fname in
if (fname = "print" || fname = "println")
then
let _ = List.iter (fun e -> ignore(expr e)) actuals
in Null
else
(if List.length actuals != List.length fd.formals then

raise (Failure ("expecting " #* string of int
(List.length fd.formals) * " arguments in " *
string of expr call))
else
List.iter2 (fun (ft,) e -> let et = expr e in
ignore (check assign ft et
(Failure ("illegal actual argument: found " #
string of typ et *
" ; expected " * string of typ ft * " in "
string of expr e))))
fd.formals actuals;
fd. typ)
| Unop(op, e) as ex -> let t = expr e in
(match op with
Neg when t = Int -> Int
| Not when t = Bool -> Bool
| _ -> raise (Failure ("illegal unary operator "
string of uop op *
string of typ t # " in " % string of expr ex)))
| NoExpr -> Null

A

A

in

let check_bool expr e = if expr e != Bool
then raise (Failure ("expected Boolean expression in " #
string of expr e))
else () in

let rec check stmt s = match s with
Block sl -> let rec check block = function
[Return _ as x] -> check stmt x

| Return _ :: _ -> raise (Failure "nothing may follow a
return")

| Block sl :: ss -> check block (sl @ ss)

| x :: ss -> check _stmt x ; check block ss

43

I [1 -> 0
in check block sl

| VDecl _ -> ()

| VAssign ((typ, string), e) -> ignore (expr (Assign(string,
e)))

| Expr e -> ignore (expr e)

| If(p, bl, b2) -> check bool expr p; check stmt bl;
check stmt b2

| While(p, s) -> check bool expr p; check_stmt s

in

(* Check for assignments and duplicate vdecls *)

List.iter check function functions;

List.iter check stmt stmt list;

(* List.iter stmt stmt list; *)

report_duplicate (fun n -> "Duplicate assignment for " * n)
(List.map snd globals) ;

8.5 codegen.ml

Code generation for BURGer Programming Language
Authors:

Jordan Lee

Jacqueline Kong

Adrian Traviezo

Ashley Nguyen

* ok F k F F F *

Llvm
Ast

module L
module A

module StringMap = Map.Make (String)

let translate (program) =
let context = L.global context () in
let the module = L.create module context "BURGer"
and i8 t = L.i8_ type context
and str_t = L.pointer_ type (L.i8_type context)

and null t = L.void type context
and il t = L.il_ type context
and i32 t = L.i32 type context in

(* types of variables in BURGer*)
let ltype of typ = function
A.String -> str_t

44

| A.Null -> null t

| A.Int -> i32 t

| A.Bool -> il t
in

(* isolate list of items that match as statements and then form a
list of statements ¥*)

let stmt list =
let stmts_as items =
List.filter (fun x -> match x with
A.Stmt (x) -> true
| _ -> false) program
in List.map (fun x -> match x with
A.Stmt(x) -> x

| _ -> failwith "stmt casting didn't work") stmts as items
in

(*after you figure out which items are statements, you need to go
through the statements

and figure out which ones contain the variable declarations ¥*)
let globals =

let global list = List.filter (fun x -> match x with
A.VDecl (x) -> true
| A.VAssign(x, _) -> true
| _ -> false) stmt_list
in List.map (fun x -> match x with
A.VDecl (x) -> x
| A.VAssign(x,) -> x

| _ -> failwith "not turned into global") global list
in

(* isolate list of statements that are NOT variable declarations *)
let not_globals_list = List.filter (fun x -> match x with
A.VDecl (x) -> false

| _ -> true) stmt_list in

(* from list of items in program, form list of functions from items
and

build the main function ¥*)
let functions =
(* generating the hidden main function ¥*)
let fdecl main = A.Function ({
typ = A.Int;
fname = "main";
formals = [];
body = List.rev(A.Return(A.IntLit(0))
List.rev(not_globals list))
|9

in

(* filtering out items that match as functions ¥*)
let functions_as items = List.filter (fun x -> match x with
A.Function(x) -> true
| _ -> false) program
in
let all functions_as_items = fdecl main :: functions_as_items
in List.map (fun x -> match x with
A.Function(x) -> x
| _ -> failwith "function casting didn't work")
all functions_as_items
in

(* Store the global variables in a string map *)
let global vars =
let global var map (t, n) =
if (ltype of typ t = str_t)
then (
let init = L.const null str t in
StringMap.add n (L.define global n init the module) map
)
else (
let init = L.const_int (ltype of typ t) 0
in StringMap.add n (L.define global n init the module) map
)
in
List.fold left global var StringMap.empty globals in

(* printf () declaration *)

let print_t = L.var_arg_function_type i32 t [| L.pointer_ type i8_t
1 in

let print func = L.declare function "print" print t the module in

let printf t = L.var_arg function_type i32_t [| L.pointer_ type i8_t
|1 in

let printf func = L.declare function "printf" printf t the module
in

let println_t = L.var_arg function_ type i32_t [| L.pointer_type
i8 t |] in

let println func = L.declare function "println" println t
the module in

(* Define each function (arguments and return type) so we can call
it *)
let function decls =
let function decl map fdecl =
let name = fdecl.A.fname
and formal types = Array.of list (List.map (fun (t,_) ->
ltype of typ t) fdecl.A.formals)

46

in
let ftype = L.function type (ltype of typ fdecl.A.typ)
formal types in
StringMap.add name (L.define function name ftype the module,
fdecl) map
in
List.fold left function decl StringMap.empty functions
in

(* Fill in the body of the given function ¥*)
let build function body fdecl =
let (the function, _) = StringMap.find fdecl.A.fname
function decls in
let builder = L.builder at _end context (L.entry block
the function) in

let int_format_str 1ln = L.build global_ stringptr "$d\n" "fmt"
builder in

let int format str = L.build global stringptr "%d" "fmt" builder
in

let local vars =
let add formal var map (formal type, formal name) param =
L.set value name formal name param;
let local = L.build alloca (ltype of typ formal type)
formal name builder in
ignore (L.build store param local builder);
StringMap.add formal name local var_map
in

let add local map (formal type, formal name) =
let local var = L.build alloca (ltype of typ formal type)
formal name builder in
StringMap.add formal name local var map
in

let formals = List.fold left2 add formal StringMap.empty
fdecl.A.formals
(Array.to_list (L.params the function)) in

let function locals =
let get locals from fbody function body =
let get vdecl locals list stmt = match stmt with
A.VDecl (typ, string) -> (typ, string) :: locals list
| A.VAssign((typ, string), _) -> if (fdecl.A.fname =
"main")
then
locals 1list
else

47

(typ, string) :: locals_list
| _ -> locals_list
in
List.fold left get vdecl [] function body
in get locals_from fbody fdecl.A.body
in List.fold left add local formals function locals
in

let lookup n = try StringMap.find n local_vars
with Not found -> StringMap.find n global vars
in

(* generate code for different kinds of expressions *)
let rec expr builder = function

A.StringLit s -> L.build global stringptr s "str" builder
| A.IntLit i -> L.const_int i32 t i
| A.BoolLit b -> L.const_int il_t (if b then 1 else 0)
| A.NoExpr -> L.const_int i32 t 0
| A.Id s -> L.build load (lookup s) s builder
| A.Binop (el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
(match op with
A.Add -> L.build_add
| A.Sub -> L.build sub
| A.Mult -> L.build mul
| A.Div -> L.build sdiv
| A.Mod -> L.build srem
| A.And -> L.build and
| A.Oxr -> L.build or
| A.Equal -> L.build icmp L.Icmp.Eq
| A.Neq -> L.build icmp L.Icmp.Ne
| A.Less -> L.build icmp L.Icmp.S1lt
| A.Leq -> L.build icmp L.Icmp.Sle
| A.Greater -> L.build icmp L.Icmp.Sgt
| A.Geq -> L.build icmp L.Icmp.Sge
) el' e2' "tmp" builder
| A.Unop(op, e) —->
let e' = expr builder e in
(match op with
A.Neg -> L.build neg
| A.Not -> L.build not)
e' "tmp" builder
| A.Assign (s, e) -> let e' = expr builder e in

ignore (L.build store e' (lookup s) builder); e'
| A.Call ("print", [s]) ->
let test = s in (match s with
A.StringLit test -> L.build call print func [| (expr

builder s) |] "print" builder

48

| A.Id test ->
let ptr 32 = L.pointer_ type i32_t
and ptr bool = L.pointer type il t in
let test type = L.type of (lookup test) in
if ((test_type = ptr_32) || (test_type = ptr bool)) then
L.build call printf func [| int_format str ; (expr
builder s) |] "printf" builder
else L.build call print func [| (expr builder s) |] "print"
builder
| _ -> L.build call printf func [| int format str ; (expr
builder s) |] "printf" builder
)
| A.Call("println", [s]) ->
let test = s in (match s with
A.StringLit test -> L.build call println func [| (expr
builder s) |] "println" builder
| A.Id test ->
let ptr 32 = L.pointer_ type i32_t
and ptr bool = L.pointer type il t in
let test type = L.type of (lookup test) in
if ((test_type = ptr_32) || (test_type = ptr bool)) then
L.build call printf func [| int_format str 1ln ; (expr
builder s) |] "print" builder
else L.build call println func [| (expr builder s) |]
"println" builder
| _ -> L.build call printf func [| int_format str 1ln ; (expr
builder s) |] "print" builder
)
| A.Call (£, act) ->
let (fdef, fdecl) = StringMap.find f function_decls in
let actuals = List.rev (List.map (expr builder) (List.rev act)) in
let result = (match fdecl.A.typ with A.Null -> ""
| _ -> £ ~ " _result") in
L.build call fdef (Array.of list actuals) result builder
in

(* Invoke "f builder" if the current block doesn't already
have a terminal (e.g., a branch). *)
let add terminal builder f =
match L.block terminator (L.insertion block builder) with
Some _ -> ()
| None -> ignore (f builder)
in

(* generate code for different kinds of statements *)
let rec stmt builder = function
A.Block sl -> List.fold left stmt builder sl
| A.Expr e -> ignore (expr builder e); builder
| A.VDecl (typ, string) -> builder

49

| A.VAssign ((typ, string), e) -> ignore (expr builder
(A.Assign(string, e))); builder
| A.Return e -> ignore (match fdecl.A.typ with
A.Null -> L.build ret void builder
| _ -> L.build_ret (expr builder e) builder); builder
| A.If (predicate, then_ stmt, else_ stmt) ->
let bool val = expr builder predicate in
let merge bb = L.append block context "merge" the function in

let then bb = L.append block context "then" the function in
add terminal (stmt (L.builder at end context then bb)
then stmt)
(L.build br merge_bb) ;

let else bb = L.append block context "else" the function in
add terminal (stmt (L.builder at end context else bb)
else_stmt)
(L.build br merge bb) ;

ignore (L.build cond br bool val then bb else bb builder);
L.builder at_end context merge bb

| A.While (predicate, body) ->
let pred bb = L.append block context "while" the function in
ignore (L.build br pred bb builder) ;

let body bb = L.append block context "while body" the_ function
in
add terminal (stmt (L.builder at end context body bb) body)
(L.build br pred bb);

let pred builder = L.builder at end context pred bb in
let bool val = expr pred builder predicate in

let merge bb = L.append block context "merge" the function in
ignore (L.build cond br bool val body bb merge bb
pred builder) ;
L.builder at_end context merge bb
in

(* Build the code for each statement in the function *)
let builder = stmt builder (A.Block fdecl.A.body) in

(* Add a return if the last block falls off the end *)
add terminal builder (match fdecl.A.typ with
A.Null -> L.build ret void
| £ -> L.build ret (L.const_int (ltype of typ t) 0))
in

List.iter build function body functions;

the module

8.6 burger.ml

(* Top-Level of the BURGer Programming Language

* Author:
2 Jacqueline Kong
*)

let =
let lexbuf = Lexing.from channel stdin in
let ast = Parser.program Scanner.token lexbuf in
Semant.check program ast;
let m = Codegen. translate ast in
Llvm analysis.assert valid module m;
print_string (Llvm.string of llmodule m)

8.7 stdlib.c

/* Standard Library for BURGer Programming Language
PLT Fall 2017

Includes 2 print functions (print and println)
Author: Adrian Traviezo */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

// Prints given string and accepts escape characters
void print(char *s) {
char c;
int 1 = 0;
while (i < strlen(s)){
c = s[i];
if (¢ == "\\"){
if (s[i+l] == 'n')
printf£("\n") ;
if (s[i+l] == 't"'")
printf ("\t");
i++;
}
else if (c == '\\' && s[i+l] == 't'){
printf ("\t");
i++;

}

else
printf ("%c", c);
i++;

}

// as above, but with a newline at end
void println (char *s) {

char c;
int 1 = 0;
while (i < strlen(s)){
c = s[i];
if (¢ == "\\'"){
if (s[i+l] == 'n')
printf("\n") ;
if (s[i+l] == 't')
printf ("\t") ;
i++;
}
else
printf ("%c", c);
i++;

}
printf("\n") ;
}

8.8 demo.bun (sample code)

/* Author: Jordan Lee */

def int countFactors (int num) {
int current num = num;
int count = 1;
int number of factors = 1;

while (count <= current num) {
if (current num % count == 0 && count != 1) {
count = count + 1;
number of factors = number of factors + 1;
} else {
count = count + 1;

}

return number of factors;

}

def null printFactor(int count, int current num) ({

print ("This is a factor of ");
print (current num) ;
print(": ")

println(count) ;

count = count + 1;

def bool checkPrime (int num) ({
int current num = num;
int count = 1;
bool isPrime = true;

while (count < current num) {

if (current num % count == 0 && count != 1) {

printFactor (count, current num) ;
count = count + 1;
isPrime = false;

} else {

count = count + 1;

}

if (count == current num) {
return isPrime;

}

}

return isPrime;

def null printResults (bool check, int num) ({
if (check == false) {
print ("CONCLUSION: ") ;
print (num) ;
print(" has ");
print (countFactors (num)) ;
println(" factors including itself and 1.
number!") ;
} else {
print ("CONCLUSION: ") ;
print (num) ;
println(" is a prime number!") ;

printResults (checkPrime (120), 120);
printResults (checkPrime (57), 57);

It is not a prime

8.0 Makefile

Make sure ocamlbuild can find opam-managed packages: first run

#

eval ‘opam config env’

Easiest way to build: using ocamlbuild, which in turn uses
ocamlfind
Authors: Jordan Lee and Jacqueline Kong

.PHONY : all
all : clean burger.native

.PHONY : burger.native
burger.native
ocamlbuild -use-ocamlfind -pkgs 1llvm,llvm.analysis -cflags
-w,+a-4 \
burger.native

"make clean" removes all generated files

.PHONY : clean
clean

ocamlbuild -clean

rm -rf testall.log *.diff burger scanner.ml parser.ml
parser.mli parser.output

rm -rf * . cmx *.cmi *.cmo *.cmx *.0 *.s *.11 * out *.exe *.err

.PHONY : parser
parser
ocamlyacc -v parser.mly

.PHONY : menhir
menhir:
menhir --interpret --interpret-show-cst parser.mly

More detailed: build using ocamlc/ocamlopt + ocamlfind to locate
LLVM

OBJS = ast.cmx codegen.cmx parser.cmx semant.cmx scanner.cmx
burger.cmx

burger : $(OBJS)
ocamlfind ocamlopt -linkpkg -package llvm -package str
llvm.analysis $(OBJS) -o burger

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

%$.cmo : %$.ml
ocamlc -c $<

$.cmi : %$.mli
ocamlc -c $<

%$.cmx : %.ml
ocamlfind ocamlopt -c -package 1llvm $<

ast.cmo

ast.cmx

codegen.cmo : ast.cmo

codegen.cmx : ast.cmx

microc.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo
microc.cmx : semant.cmx scanner.cmx parser.cmx codegen.cmx ast.cmx
parser.cmo : ast.cmo parser.cmi

parser.cmx : ast.cmx parser.cmi

scanner.cmo : parser.cmi

scanner.cmx : parser.Cmx

semant.cmo : ast.cmo

semant.cmx : ast.cmx

parser.cmi : ast.cmo

8.10 burgr.sh (compiling + runtime script)

#!/bin/bash

usage: "./burgr.sh file-name"

do not append with .bun

Authors: Jordan Lee and Jacqueline Kong

echo "------ compiling object file------ "
gcc -c -Wall stdlib.c

echo "------ running burger.native------ "
./burger.native < $1l.bun > $1.11

echo "------ llc command------ "

1llc $1.11

echo "------ linking files—------ "

gcc -o $1 $1.s stdlib.o

echo "------ running executable------ "

./81

(9) 1
Vi

8.1 burgr-c.sh (compiling script)

#!/bin/bash

usage: "./burgr.sh file-name"
do not append with .bun

Author: Jordan Lee

echo "------ compiling object file------ "
gcc -c -Wall stdlib.c

echo "------ running burger.native------ "
./burger.native < $1.bun > $1.11

echo "------ llc command------ "

1llc $1.11

8.12 testall.sh (automated testing script)

#!/bin/sh

Regression testing script for BURGer (Modified from MicroC)

Step through a list of files

Compile, run, and check the output of each expected-to-work test
Compile and check the error of each expected-to-fail test

Authors: Ashley Nguyen and Jordan Lee

Path to the LLVM interpreter
LLI="11i"
#$LLI="/usr/local/opt/llvm/bin/11i"

Path to the LLVM compiler
LLC="1l1lc"

Path to the C compiler
CC="gcc"

Path to the microc compiler. Usually "./microc.native"

Try " build/microc.native" if ocamlbuild was unable to create a
symbolic link.

BURGER=". /burger.native"

#MICROC="_build/microc.native"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0
Usage () {
echo "Usage: testall.sh [options] [.bun files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1

SignalError () ({
if [$error -eq 0] ; then
echo "FAILED"

error=1l
fi
echo " $1"

}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to
difffile
Compare () {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$§3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}
}

Run <args>
Report the command, run it, and report any errors
Run () {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
}
}

RunFail <args>
Report the command, run it, and expect an error
RunFail () {
echo $* 1>&2
eval $* && {
SignalError "failed: $* did not report an error"
return 1

}

return 0

}
Check () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.bun//'"
reffile="echo $1 | sed 's/.bun$//'"
basedir=""echo $1 | sed 's/\/[*\/1*$//' /."
echo -n "$basename..."
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""
generatedfiles="$generatedfiles ${basename}.ll ${basename}.out"
&&
Run "$CC" "-c -Wall" "stdlib.c" &&
Run "$BURGER" "<" $1 ">" "${basename}.ll" &&
Run "SLLC" "${basename}.ll" &&
Run "$CC" "-o" "S${basename}" "${basename}.s" "stdlib.o" &&
Run "./${basename}" > "${basename}.out" &&
Compare ${basename}.out ${reffile}.out ${basename}.diff
Report the status and clean up the generated files
if [$error -eq 0] ; then
if [S$keep -eq 0] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi
}
CheckFail () {
error=0
basename="echo $1 | sed 's/.*\\///

s/.bun//'"
reffile="echo $1 | sed 's/.bun$//'"
basedir=""echo $1 | sed 's/\/[~\/1*$//' /."

echo -n "$basename..."

echo 1>&2
echo "###### Testing $basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff"
&&

RunFail "$BURGER" "<" $1 "2>" "${basename}.err" ">>" $globallog
&&

Compare ${basename}.err ${reffile}.err ${basename}.diff

Report the status and clean up the generated files
if [$error -eq 0] ; then

if [$keep -eq 0] ; then
rm -f $generatedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=$error
fi

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files

keep=1
h) # Help
Usage
esac
done

shift ‘expr $OPTIND - 1°

LLIFail() {

echo "Could not find the LLVM interpreter \"S$LLI\"."

echo "Check your LLVM installation and/or modify the LLI variable
in testall.sh"

exit 1

}

#

which "$LLI" >> $globallog || LLIFail

if [$# -ge 1]

then

files=$@
else

files="tests/test-*.bun tests/fail-*.bun"
fi

for file in $files
do
case $file in
test-)
Check $file 2>> $globallog
fail-)
CheckFail $file 2>> $globallog

*)

echo "unknown file type $file"
globalerror=1

esac
done

exit $globalerror

8.12 Test Cases

fail-assignl.bun

int x;
x = true;

Fatal error: exception Failure("illegal assignment int = bool in x = true")

fail-dupl.bun

int x;
int x;

Fatal error: exception Failure("Duplicate assignment for x")

fail-exprl.bun

bool a = true;

bool b;
a = true;
b = false;

bool ¢ = a+b;

60

Fatal error: exception Failure("illegal binary operator bool + bool in a + b")

fail-expr2.bun

int a;
a=4;
bool b = true;

if(a == b) {
print ("wrong") ;

}

Fatal etror: exception Failure("illegal binary operator int == bool in a == b")

fail-funcl .bun

def int check(int a) {
return a;

def int check(int b) {
return b;

}

Fatal error: exception Failure("duplicate function check")

fail-func2.bun

def int check(int a, int b) {
return a;

}
check (1, 2, 3);

Fatal etror: exception Failure("expecting 2 arguments in check(1, 2, 3)")

fail-func3.bun

def int check(int a, int a) {
return a;

}

Fatal error: exception Failure("duplicate formal a in check")

fail-func4d .bun

def null print(){
print("hi") ;
}

Fatal error: exception Failure("function print may not be defined")

61

fail-func6.bun

def null main () {
print("hi") ;
}

Fatal error: exception Failure("function main may not be defined")

fail-func7.bun

def null println() {
print ("wtf");
}

Fatal error: exception Failure("function println may not be defined")

fail-func8.bun

def null what(null x) {
print ("wtf") ;
}

Fatal etror: exception Failure("illegal null formal x in what")

fail-if.bun

if (43) {
print("fail");
}

Fatal etrror: exception Failure("expected Boolean expression in 43")

fail-wvarl.bun

int x;
print(x) ;
int x;

Fatal error: exception Failure("Duplicate declaration or assignment for x")

fail-whilel.bun

while (41) {
print ("what") ;
}

Fatal error: exception Failure("expected Boolean expression in 41")

62

test-assignl.bun

int x = 2;
bool y = true;
print("x = ") ;
println(x) ;
print("y = ");
println(y) ;

x=2
y=1

test-assign2.bun

string butterfly = "monarch";

bool pretty = true;

print (butterfly) ;

println(" butterflies are pretty if this prints 1: ");
println (pretty) ;

monarch butterflies are pretty if this prints 1:
1

test-comml .bun

def null test() {
/*commenting stuff*/
print("ya\n") ;

}

test () ;

ya

test-fib.bun

def int fib(int x)
{

if (x < 2) return 1;

return fib(x-1) + fib(x-2);
}

println (£ib(0)) ;
println(£fib(1)) ;
println(£fib(2)) ;
println(£ib(3)) ;
println(£fib(4)) ;
println(£ib(5)) ;
println ("Fibonacci test over!");

03

o Ul W N~

Fibonacci test over!

test-funcl.bun

def int add(int a, int b) {
println("add numbers!") ;
return a + b;

}
println(add (1, 3));

add numbers!

4

test-func2.bun

def null testPrint(int a, bool c,
println(a) ;
println(c) ;
println(d) ;
}
testPrint (4,

false, "hello");

string d) {

4
0
hello

test-func3.bun

def null add(int a,
int r;
r = a+b;
println(r) ;

int b) {

r = a-b;

println(r) ;

r = a*b;
println(r) ;

if (a>b) {
println ("works") ;

}
if (a<b) {

64

println ("wrong") ;
}
if (a>=b) {
println("yes") ;
}
if (a<=b) {
println("no") ;
}
if (a'!'=b) {
println("yas") ;
}

}

add (46, 32);

78
14
1472
works
yes

yas

test-func4 .bun

def string retl(string s) {
return s;

}

string t;
t = retl("omg") ;
println(t) ;

def int retd (int i) {
return i;

}

int a;

a = retd (5);

println(a) ;

omg

5

test-func5.bun

def int check(int a){
return a;
int x;

}

print (check(5)) ;

5

test-globall.bun

int a;
int b;
a=2;
b =4;

def int inc(int a){
a=a+1;
return a;

}

println(a) ;
println(b) ;
a = inc(a);
b = inc(b);
println(a) ;
println(b) ;

U1 W BN

test-hello.bun

print("Hello World!") ;

Hello World!

test-if2.bun

if (true) {
int x;
int y;
println("£££") ;
}

if (1<3){
println ("YES") ;
println ("HI") ;
}

else {

66

println ("NO") ;

fff
YES
HI

test-if3.bun

if (true) {
println("hi") ;
if (true) {

}
if (false) {
print ("what") ;
}
}

println("idk") ;

hi
idk

test-if4 .bun

if (true) {
print ("what") ;
}
else(
print ("wtf") ;
}
what

test-if5.bun

if (false) {
print("no") ;

}

else if (true) {
print("yes") ;

}
else {

println ("why") ;
}

if (false) {
print("no") ;

}

else if(false) {

6

print("yes") ;

}

else {
println("why") ;

}

yeswhy

test-initl .bun

int a;
print(a) ;

0

test-init2.bun

bool a;
print(a) ;

0

test-mathl.bun

int a;
a = 2*7+1;
println(a) ;

int b;
b = 2*%(7+1) ;
println(b) ;

int c;
c = a+b;
println(c) ;

15
16
31

test-math2.bun

def int math(int a, int b,
int r = a*(b+c) ;
return r;

}

int x = math(3, 2, 4);

print(x) ;

int c) {

68

18

test-opsl.bun

print(1+2) ;
print(2-1);
print (3/1);
print (15%4) ;
println(2*2) ;

31334

test-ops2.bun

println(1==1);
print (1==2) ;
print(1<=1) ;
print (1<=2) ;
print(2<=1) ;
print (2<2) ;
print(2<1) ;
print (1<2) ;
print (2>2) ;
print(2>1) ;
print (1>2) ;
print (1>=2) ;
print (2>=2) ;
print (1!=2) ;
println (2>=1) ;

1
01100010100111

test-ops3.bun

print(true) ;

print (false) ;

print (true && true);
print (true && false);
print (false && true);
print(false && false);

print(true || true);

print(true || false);
print(false || true);
print(false || false);

print (!true) ;
print (!false) ;

101000111001

69

test-print.bun

print ("Hello World!'") ;

print ("5+3") ;

print ("!'@#$%M&* () -=_+, ./<>?~ " [1{}|:;\t");
print (5*6) ;

print("\n") ;

Hello WorldI5+31@#8$%"8*()-=_+,./<>~"[|{} | ; 30

test-println.bun

println(3) ;
println("hellooo") ;
println ("sooooooo0oo hmm") ;
println(true) ;

3
hellooo

SO00000000 hmm
1

test-scopel.bun

int b;

b=25;

def int foo() {
int a;
a = b+5;
return a;

}

def int bar() {
int b;
b=2;

return foo () ;

}

println(foo()) ;
println(bar()) ;

10
10

test-varl.bun

string bucket = "water";
println (bucket) ;

70

water

test-var2.bun

int x = 5;
print(x) ;

5

test-whilel .bun

int i;

i=20;

while (i<5) {
println("yum") ;
println ("burgers") ;
i=1i+1;

}

yum
burgers
yum
burgers
yum
burgers
yum
burgers
yum

burgers

test-while2.bun

def int idk(int a) {
int i = 0;
int j = 0;
while (i<a) {
i=i+1;
j = j+2;
}
return j;
}
print(idk(5)) ;
10

71

