tiler.

Manager: Jason Lei (j13825)

Language Guru: Monica Ting (mst2138)
System Architect: Evan Ziebart (erz2109)
System Architect: Jiayin Tang (jt2823)
Tester: Jacky Cheung (jc4316)

Language Description:

tiler is a language designed to simplify the process of programming turn-based, square tiled
games. Tiles are basic descriptive units of the game environment and are arranged in a grid. tiler
allows programmers to interface with tiles through a coordinate system. Tile-based board games
(Monopoly, Chutes and Ladders, Sorry!, Chess, Checkers, etc.) lend themselves easily to be
programmed by tiler. However, tiler can handle more ambitious games, specifically tactical
RPGs (Final Fantasy Tactics, Fire Emblem, Advanced Wars, etc).

In addition to allowing the programmer easily create and interface with the game’s environment,
tiler allows the programming of objects (such as boardgame pieces or video game characters)
and to assign these objects attributes that signify its roles in the game. This allows for easy
control of objects with specific attributes, thereby reducing code redundancy and providing
scalable control of objects of identical/similar types. Furthermore, the coordinate system allows
for intuitive control of movement of objects during each discrete turn and tiler provides
operations to easily define movements that are and are not allowed.

To further simplify the programming of games, tiler is structured around code blocks (described
in depth under “Language Concepts”). These blocks represents aspects of games that are
universal (grid/board initialization, gameplay, rules, interactions, etc). The abstraction of these
concepts allows for improved code readability compared to conventional programming
languages and reduces the learning curve required to understand the foundations needed to create
a game. In addition, a variety of built-in game-specific functions allow for games to be expressed
in a less verbose manner; this also improves code readability and reduces programming time.

tiler’s syntax is designed to be both familiar for experienced programmers and simple enough for
beginner programmers seeking to program games to easily pick up. This simplicity stems from
the reduction in abstraction of game elements required when programming games in more
general-use languages. tiler can feasibly be used to program for other purposes, but its structure
and syntax make it intuitive to program turn-based tile games and do not lend itself easily to
other purposes.

Language Concepts:

Board

The programmer operates within the framework of a board consisting of 2D grids. The board
simultaneously acts as a windowed environment for the program and a coordinate system for
gameplay.

Objects

The concept of objects corresponds to the pieces which occupy the game board. Each object
consists of a series of attributes which define its type and behavior. All objects have at minimum
an attribute which defines their current location on the board grid.

Variables

Behave much like in traditional programming languages. Can be declared in the init code block
and then scope to any other code block of the program.

Attributes

Attributes define the type and behavior of the objects on the board. They act similarly to
variables in that they can take on various values, called states. However, unlike variables they are
specific to objects. The programmer typically enumerates these states when declaring attributes
for an object.

Turn

Every game is made up of basic units called turns, during which the program will behave the
same on each looping. There may be several turns in the game which execute in sequence to add
up to a round. The round is then repeated until the game ends.

Code Blocks

In the tiler language, code is divided into different labeled code blocks, each serving a specific
function in defining the larger game. Each one is attached to a specific keyword in the language.
A quick run-down of these code blocks is as follows:

e init: used by the programmer to define how the game should be at the start of execution.
This code serves the function of setting up the board as well as initial placement and
states for all the objects involved in the game. Additionally, this part of the code is where
the programmer defines variables which they would like to use in other blocks.

e turn: in these code blocks, the programmer defines how the game behaves during each of
the one or more turns. The game might prompt the player, listen for input, and/or
manipulate the entities on the board. This allows the programmer to abstract away the
need for a “game loop”, since these code segments will loop continuously during play.

e end: this block is where the programmer defines a series of conditions which indicate the
game has reached a final state.This is done using the keyword case to specify each of the
conditions. It is also where the programmer defines game behavior once the end
conditions are met

e rules: this is the part of the code where the programmer specifies object behavior during
gameplay, usually as dictated by the object’s attributes. The programmer can then specify
change of state for important object attributes such as coordinates on the board.

e class: the programmer uses this part of the code to define the objects that will populate
the board during game execution. In particular, attributes for the objects are specified, as
well as the states they can take on.

Design Principles:

Datatypes

e Primitives: int, float, string, boolean, null
e Arrays
o Limited to 1D arrays of any types listed in (a)
o A programmer would not have to manipulate 2D matrices themselves
e Map
o In curly braces, separated by commas
o {1: ‘one’, 2: ‘two’}
e Tuples
o (x, V)
o Coordinates

Operators
e + - * /5
e == 1= ! & & || > < >= <=

e >> I>>
o ‘can be moved to’ or ‘can be placed at’ and its negation
o 1if (rook >> (2, 2)) { ..}
e // single line comment
e /*
multi-line
comment
*/

® ‘string’

Keywords and Built-in Functions

e Block keywords: init, rules, turn, end
e Move
0 move((x, y)), move(left, 1)
o object method that changes the coordinate of the piece based on arguments that
are passed into it

e Random
o random () : generates a random float between 0 and 1
o random (board) : generates a random coordinate in the board/grid
O move (random (board))

e Miscellaneous
o grid(int x, int y): creates a board with dimensions x by y
0 background (string filename) : sets the background image for the

board
O captureMouse ()
0 print(string message)
O prompt (): getuser input, returns string
Sample Code:

Below are 3 example programs for tic-tac-toe, chess, and an obstacle game.

Tic-tac-toe is a simple game with several possible winning conditions.

Chess contains a sample rule block.

The obstacle game shows how multiple object classes can be created to have different attributes.

/* create your own “objects” by defining them as a new class
each new object class implicitly contains x and y coordinates (ints)
each new object class implicitly contains get/set methods for coordinates
programmer can define their own additional attributes
programmer can define their own additional methods

*/
// tic tac toe

class Piece {
// define additional attributes

attr players: string {'x', 'o'};

}

init {
// set board size and optional background image
board (3, 3);

background ('3x3board.jpg') ;
int x, vy;

turn playerl {
print ('x turn: click an empty tile');
// keep capturing mouse coordinates until it captures a valid (empty) tile
do {

X, y = captureMouse();
} while (!board[x,y].isEmpty());
board[x,y] = new Piece(player='x");

turn player2 {
print ('o turn: click an empty tile');

do {
X, y = captureMouse();
} while (!board[x,y].isEmpty());
board[x,y] = new Piece(player='o"');
}
end {

case 1l: for tile in board.row[0] {
if (tile.player == board[0,0].player) {
print (board[0,0] .player + ' wins');

case 2: for tile in board.row[1l] {
if (tile.player == board[0,1l].player) {
print (board[0,1].player + ' wins');

case 3: for tile in board.row[2] {
if (tile.player == board[O0,2].player) {
print (board[0,2] .player + ' wins');

case 4: for tile in board.column[O0] {
if (tile.player == board[0,0].player) {
print (board[0,0] .player + ' wins');

case 5: for tile in board.column[l] {
if (tile.player == board[1l,0].player) {
print (board[1l,0].player + ' wins');

case 6: for tile in board.row[2] {
if (tile.player == board[2,0].player) {
print (board[2,0].player + ' wins');

case 7: if

(board[0,0] .player
&& board[0,0].player == board[2,2].player)
wins') ;

print (board[0,0] .player + '

case 8: if

(board[0,2] .player
&& board[2,0] .player

board[1l,1].player

board[1l,1].player
board[1l,1].player)

'rook',

print (board[1l,1].player + ' wins');
}
bool gameFull = True;
for tile in board {
if (tile.isEmpty) {
gameFull = False;
}
}
case 9: if (gameFull) {
print ('Tie');
}
}
// chess
class Piece {
attr player: string {'black', 'white'};
attr role: string {'pawn', 'knight', 'bishop',
attr removed: bool {True, False}
}
init {
board (8, 8);
background ('chessboard.jpg"') ;
int x, int y;
// place objectss on the board
for tile in board.row[l] {
tile = new Piece('black', 'pawn', False);
}
board[0,0] = new Piece('black', 'rook',6 False);
board[0,7] = new Piece('black', 'rook',6 False);
board[0,1] = new Piece('black', 'knight', False)
board[0,6] = new Piece('black', 'knight', False)
board[0,2] = new Piece('black', 'bishop', False)
board[0,5] = new Piece('black', 'bishop', False)
board[0,3] = new Piece('black', 'queen', False);
board[0,4] = new Piece('black', 'king', False);
for tile in board.row[6] {
tile = new Piece('white', 'pawn', False)

’

’

’

’

'queen’,

'king'};

rules {

= new

new
new
new
new
new
new

= new

Piece
Piece

Piece
Piece
Piece
Piece
Piece

Piece (player='white',
Piece (player='black',

Piece (player="'knight') :

[i+1, j-21,

turn white {
print ('White's turn:

do {

Xy

Piece piece = board[x,v];

print ('Select a tile to move

do {

Xy

[i+2,

y = captureMouse() ;
} while (board[x,y].player ==

y = captureMouse() ;

} while(rule[piecel);

if (!board.isEmpty(x,

board[x,y] .removePiece () ;

}

piece.move (x,

turn black {
print ('Black's turn:

do {

Xy

Piece piece = board[x][y];

print ('Select a tile to move

do {

Xy

V)i

captureMouse () ;
} while (board[x,y].player ==

= captureMouse () ;

} while(rule[piecel);

j+11,

', 'rook',
'rook',

', 'knight', False
'knight', False
'bishop’
', 'bishop'

'queen’',
|, 'king',

role="pawn'): [1,
role="pawn'): [1,
31 >> {[i+1,
[i-2, j-11,

select a piece');

'white');

to');

select a piece');

'black');

False) ;
False) ;

, False
, False
False);
False) ;

)
)
)
)

jl >> {I
jl >> {I
j+2],

[
[i+2, 3-11,

j+11}
j-11}

1/ j_z]r

[i_ll

(i-2, j+11}

j+21,

if (!board.isEmpty(x, y)) {
board[x,y] .removePiece () ;

}

piece.move (x, V);

end {
int kingCount = 0;
string winner;
for tile in board {
if (tile.piece.role == 'king') {
kingCount++;
winner = tile.piece.player;

}
if (kingCount == 1) {
print (winner + ' wins');

// obstacle/maze game

// example of creating multiple classes for game
class Character {

attr strength: int;

attr name: string;

class Obstacle {

