
Project Proposal

Sandbox: 2D Game Engine

 Daniel Tal (dt2479) [Manager]
 Martin Fagerhus (mf2967) [Language Guru]
 Abhijeet Mehrotra (am4586) [System Architect]
 Roy Prigat (rp2719) [Tester]

1. Language description

 Sandbox is a language that will be geared towards creating a two-
dimensional grid-like game world. Properties of the world will be defined by the

programmer which include, but are not restricted to, dimensions of the world

and dynamic or static objects/obstacles with programmable properties (for ex.

hitting an object impacts player life). Conditional event functionality is
programmable, this will allow the programmer to define outcomes of the player's
interaction with the world. This will create, what can be defined as, a game

engine which contains the properties and enforces the rules of the game during

play-time.

 This can be seen as a foundational layer for easy implementation of a

functional two-dimensional grid-like game and simultaneously provides
opportunity for more complex games with a multitude of features. Our language

will simplify game creation by abstracting away the need for the programmer to

account for threading and multiple other lower-level features that are imperative

for creating games in other languages. The game developer can therefore spend

more time on creative aspects of the game and less time on implementing

tedious back-end functionality.

 Our language will provide a shell-like log interface which the player will be

able to interact with in a command line interface. The log(game status) will be

updated based on player interaction and events triggered on a timer basis as the

game goes on. This log based game information will be a game engine and will
hook into a GUI written in another higher-level language such as Java.

2. Features

• Generate 2D maps, define the walls/boundaries, obstacles and moving

elements.
• Define Player entities: location and other starting configurations
• Apply the rules of physics to the world

• Define events:
Winning condition

Player and obstacle collisions
Shooting directions(hitting another player)

3. Data types/structures

3.1 Primitives

3.2 Structures

4. Conditionals

Type Description

int Integer

float 32-bit floating point number

bool True/False

char Character

Type Syntax Description

Tuple (int,int)
Primarily used for

coordinate

representation

Keyword Description Syntax

if if statement if [condition] {…}

else else statement else {…}

for for loop for[condition] {…}

while while loop while[condition] {…}

5. Reserved Keywords

6. Operators

Type Operator Description

Assignment =
Right hand value

assigned to left hand

Arithmetic

+
-
/
*
%

Addition
Subtraction
Division

Multiplication
Modulo

Comments # Single line commenting

Boolean &&
||

AND
OR

Relation and

Comparison

!=
<
>
<=
>=

Type Description

World
world is defining the layout of the game. It is the main entity which owns the

static and dynamic obstacles and the players that exist in the world. It also

owns events like world.begin() and world.end()

Reset reset the world to its original configurations

Event signifies event type

Condition Signifies condition for event action to take place. Defined by event

Action Signifies event action, defined by event

Player
It is class type of a player object. It has required properties like:
initial_position, thickness, bounce, health, lives.

static_obstacle Is immutable in the world. Is rendered at world_start and doesn’t change.

dynamic_obstacle
Is mutable. Can have health associated with destruction, if health=-1,
indestructible. It has required properties like: initial_position, thickness,
bounce, health. Can also have a speed vector.

7. Sample Program

defining a player(inbuilt type)
player ash {
 position = (0,0); #initial place on grid when world renders
 thickness = 1; #width of player
 health = 100; #health of the player

lives = 3; #lives of the player
speed = 1; #in blocks/second, triggered when the mouse is moved
event die () {

 condition {
 this.health = 0;
 this.lives = this.lives-1;
 }
}

 action {
 world.reset();
}

}

element static_obstacle wall {
width = 1;

 direction = 0;
 length = 6;
 damage = 0;
}

element dynamic_obstacle guard {
 width= 1;
 length = 1;
 speed = 1; # in blocks/second
 bounce = true;
 damage = 100;

health = -1; # infinity
}

event win (player p) {
 condition {

 p.position = (9, 9)
 }
 action {

 world.end();
}

}

defining a world with 1 player, a guard that oscillates between the wall and the right boundary.
world w {
 dimensions d = (10,10) #dimensions of the grid
 player p1 = new ash();
 wall w1 = new wall(position = (3,1));
 # guard that bounces between the wall and the right boundary with speed 1.
 guard g1 = new guard(initial_position = (1,3), direction = 0);
 # It had 100 damage and kills the player instantly

event e = new event(win p1)
}

