Sandbox: A More Visual Hardware Description
Language

MEGAN FILLION (mlf2179)
GABRIEL GUZMAN (grg2117)
DIMITRI LEGGAS (dd12133)

September 26, 2017

Introduction

The motivation behind Sandbox was to create a sandbox-like environment where users can
build and test digital circuits. We thought of this idea while thinking about our time in
Fundamentals of Computer Systems. Most students with a background primarily in software
programming struggle when they are confronted with the world of hardware. We were
therefore driven to create a language that links the world of programming and electrical
engineering—making it easier for us hardware rookies to visualize circuit construction in an
setting that we understand. Unlike that of other hardware description languages, the syntax
of Sandbox will allow the programmer to visually infer the design of the circuit. Sandbox
will best be used alongside a sketchpad of circuits diagrams.

Language Description

We are aware that we are not the first to develop a hardware description language. Some
of the principles of Sandbox take cues from EHDL—a student-designed language that models
digital circuits. Although Sandbox and EHDL strive to simplify the verbosity of VHDL the
syntax we implement in our language will look very different [2]. Because Sandbox has a
didactic purpose, our syntax will emphasize the relationship between the elements of digital
circuits. We will implement this using an indentation scheme. We do not plan to give the
programmer as much control over the clock and timing as EHDL does.
This is how the typical sandbox program would work:

1. Definition of Circuit Components. These would look like functions in any language—
the function (“circuit”) will take arguments, which represent the circuit inputs, and
given logical expressions that produce some number of outputs. A great feature of

Sandbox is that the most common circuit elements, such as multiplexers, decoders,
adders, and registers, will be included in the standard library.

2. Instantiation of Circuit Components. Because the designer of a digital circuit
will likely need multiple pieces of the same circuitry, we will need to devise a way
to create instances of a given type of circuit. Whether the functions described above
return instances of a function or a circuit datatype that can update its “output” fields
as its “input” fields are changed has yet to be decided.

3. The Sandbox Environment (Here’s the fun part). In what is essentially a main
function we emulate a sandbox environment where programmers can demonstrate the
link between each piece of their circuitry by using a sequence of indentations. If the
user can visually infer the sequential logic of the circuit through code, they will better
understand how each block works individually and as a part of the larger circuit.

The compiler will ensure that there are no issues in building the circuit. It will check
for faulty or mismatched links between the user’s circuit pieces. If a build-time issue is
encountered, the compile will fail and return the location of the faulty link. We intend to
implement an “expected output” feature. When running their program, which is essentially
a large digital circuit, the user can provide a set of inputs and the expected outputs. Sandbox
will check if the circuit works as expected, thus allowing the user to build and quickly test
circuit-implementations of specific algorithms.

Keywords

Sandbox will use the following keywords and symbols (not exhaustive):
e Logical gates: && (and), || (or), ! (not), ~ (xor)
e Types: int corresponds to bits, char to AASCI
e Built-In Circuits: mux(...), dec(...), add(...) are a few examples.

e [/O: INPUT and OUTPUT to denote user input and output. We will include a function
to prompt the user for input.

e Timing: CLOCK, ENABLE, RESET

e SANDBOX will denote the start of the sandbox enviornment

Example Program

As an example of what a sandbox program would look like, we implement a circuit for a
4-bit ripple carry adder. The design of this circuit can be found in Figure 1.

A3 B3 A2 B2 A1l B1 A0 BO

I I I I I

Full Adder 4 Full Adder 3 Full Adder 2 Full Adder 1
&—{Cout Cin Cout Cin Cout Cin Cout Cin ‘—J
S3 S2 S1 | S0
4 bit ripple carry adder www_circuitstoday.com

Figure 1: A digital circuit that computes the sum of two unsigned 4-bit integers. Diagram
found on circuitstoday.com.

The program follows. Everything up until SANDBOX should be fairly self-explanatory.
However, as for our indentation scheme. .. Each level of indentation implies some transfer of
signal. For example, the statement FA2(1->2) implies that the code block FA2 will take the
first output of the block on the preceding level of indentation (FA1) as its second input.
The order of inputs is defined when the circuit pieces are defined.

// Taking 4—bit inputs from the user and setting the carry—in at 0.
int [4] A = user_in (4);

int [4] B = user_in (4);

int Cin = 0;

int [4] SUM;

// defining and instantiating full adders

(int sum, int carry) fulladder(int a, int b, int cin){
sum = a ~ b " cin;
carry = (a && b) " (cin && (a " b));

}

FAO0 = fulladder ()
FA1l = fulladder ();
FA2 = fulladder ()
FA3 = fulladder ()

SANDBOX :
Cin
FAO(INPUT—>2)
FAL(1—>2)
FA2(1—>2)
FA3(1—>2)

Al0]
FAO (INPUT—>0)
S[0](0—>OUTPUT)
B[0]
FAO(INPUT—>1)
Al1]
FA1(INPUT—>0)
S[1](0—>OUTPUT)
B[1]
FA1(INPUT—>1)
Al2]
FA2(INPUT—>0)
S[2](0—>OUTPUT)
B[2]
FA2(INPUT—>1)
Al3]
FA3(INPUT—>0)
S[3](0—>OUTPUT)
B[3]
FA3(INPUT—>1)

Given the multiplicity of inputs and outputs for each code block, there are clearly multiple
ways to define the same circuit in the SANDBOX environment. This ambiguity will allow the
programmer to arrange their elements in the most visually coherent and instructive way. We
have not decided on a definite syntax and the one demonstrated above clearly needs some
slight modifications to remove ambiguities. However, this example highlights the indentation
scheme that is the main idea of Sandbox.

References

[1] M. Morris Mano, Charles R. Kime, Tom Martin Logic and Computer Design Funda-
mentals, Pearson Higher Education, Inc. (2015).

[2] Paolo Mantovani, Mashooq Muhaimen, Neil Deshpande, Kaushik Kaul, Easy Hard-
ware Description Language, http://www.cs.columbia.edu/~sedwards/classes/
2011/w4115-fall/proposals/EHDL.pdf (2011).

[3] Ram Koganti, Khader Mohammad, Greatest Common Divisor Logic Circuit, http:
//web.cecs.pdx.edu/~mperkows/CLASS_VHDL/VHDL/gcd/assignme.htm (1998).

