The English Language
Language

Team Members:

Emily Bau, eb3029, Project Manager
Nivita Arora, na2464, Language Guru
Michele Lin, ml3706, System Architect
Candace Johnson, crj2121, System Architect
Rabia Akhtar, ra2805, Tester

Introduction:

The English Language language solves problems specific to document manipulation and
data extrapolation. People who would like to write scripts that analyze multiple documents
quickly and can cross compare documents will find it it hard in traditional languages. Our
language provides core file manipulation operations and storage structures and allows for
libraries that mine statistics and check for plagiarism. This could especially be useful for
teaching and publishing related activities.

Language Overview:

Our language allows for streamlining of calculating most used words, most popular
subject, time a human takes to read this file, and other useful information related to one text
file. It will also help streamline comparing lists of files for searching for relevant keywords and
other comparison functions.

Data Types:
integers intx=4
floats floaty =3.14159
string string = “hello world”
arrays string [] = [*hello”, “world"]
booleans bool isCommon = true
Objects:
document doc = new doc(String path);
A document object containing a max-heap
and hashmap (word, count) to store and
process file content. It also contains
information like number of words.
max-heap max-heap storing (count, word), maximizing
by count
hashmap hashmap storing (word, count)

Operators:

Integer Operators:

==, <, >, <=, >=

1

+, - */I%l++l+=

1 1

Arithmetic

General Operators:

equals

String Operators:
+ concatenation
== is equal to
< shorter in length
> longerin length
0 index of string
Logical Operators:
I or
&& and
! not

Control Flow:

/*to*/ Multiple line comments
// Single line comments
if/elif/else Conditional statements
for/while Conditional loop

statements

Numerical relation

End of statement

Built in Functions:

print()

Function to print any data type

doc.getKeywords(int numberOfKeywords)

Return the most frequently used words in a
document

toLower()

Changes an uppercase word to lowercase

doc.getCount(string word)

Searches for a particular word in a document
and returns the frequency of word (integer)

Sample Program:

boolean plagarismCheck(doc EssayA, doc EssayB){

}

string [] keyWordsA = EssayA.getKeywords(10);
string [] keyWordsB = EssayA.getKeywords(10);
int totalSimilar = 0;

for(int i =0; i<9; i++){
For(j=0; j<9; j++){
if(keyWordsA[i]==keyWords[j]){
totalSimilar++;
} }
}

if(totalSimilar >7){
return True;

}

return False;

doc findRelevant (doc[] docs, string keyword) {

doc mostRelevant;
int keywordCount = 0;
for (inti=0; i< docs.length; i++) {
if (docs][i]l.getCount(keyword) > keywordCount) {
mostRelevant = docs][i];

}

}

return mostRelevant;

