
WebLang Language Reference Manual

Ryan Bernstein (rb3234) — Brendan Burke (btb2121) — Christophe Rimann (cjr2185)
Julian Serra (jjs2269) — Jordan Vega (jmv2177)

October 17, 2017

Contents

1 Introduction 3

2 Lexical Conventions 3
2.1 Identifiers . 3
2.2 Reserved Keywords . 3
2.3 Comments . 4
2.4 Literals . 4
2.5 Operators . 4
2.6 Separators and Punctuation . 5

3 Types 5
3.1 Primitives . 5
3.2 Using Types . 6
3.3 Function Types . 7
3.4 Types as Values . 7
3.5 Type checking . 7
3.6 User Defined Types . 7

4 Imports and Namespaces 8

5 Functions 9
5.1 Endpoint Functions . 10
5.2 Helper Functions . 10
5.3 Function calls . 10
5.4 Variable Assignment from Function . 10
5.5 Arguments . 10
5.6 Recursion . 11
5.7 log . 11

6 Control Statements 11
6.0.1 Looping: foreach . 11
6.0.2 if else . 12

7 Expressions 12
7.1 Arithmetic . 13
7.2 Function Call . 13
7.3 Object, Array . 13
7.4 Operators . 13

7.4.1 Assignment Operator . 14
7.4.2 Arithmetic Operators . 14

1

7.4.3 Conditional Operators . 15
7.4.4 Object Set Operators . 15

7.5 Operator Precedence . 17

8 Compiler Output 17
8.1 Running a Server . 17
8.2 Options when running a server . 17

2

1 Introduction

Programming is becoming increasingly tied to the web. Most recent, relevant, and useful
applications that we use in our everyday lives have some sort of web interaction through
HTTP protocol. Much of this interaction is being done through representational state
transfer and RESTful APIs. WebLang aims to provide programmers with a simple tool
that consolidates interaction and facilitates consumption of RESTful applications. Our
language is designed to make structures for specific applications, with callable endpoints,
eliminating the hassle of authentication and identification. Moreover, it should ease the
combination of information gathered from multiple APIs, allowing for exciting possibilities
for programs using interaction with multiple application programming interfaces. This
language is designed specifically to handle conventional return types from these interfaces
(primarily JSON), and allows developers to process data and program with it efficiently.

WebLang utilizes C libraries to interact with servers using HTTP protocol, targeting the
LLVM compiler. It is the goal of the language to allow programmers to easily and ef-
ficiently interact with RESTful applications. The following language reference manual
provides detailed explanations on WebLangs syntax and functionality.

2 Lexical Conventions

2.1 Identifiers

Identifiers are used to name functions, types and variables. These use ASCII letters [A-Z,
a-z], the underscore character, and decimals, but they must start with an ASCII letter.
Identifiers are case sensitive, which means that an identifier such as random api is treated
as a different identifier from Random api. Moreover, identifiers must not be equivalent to
any of our reserved keywords (listed in the following section) as, naturally, the use of these
keywords would result in errors.

2.2 Reserved Keywords

WebLang has a set of specific identifiers and functions which cannot be used for by the
programmer for any other purpose (such as functions or variable names). These keywords
are enumerated below, and will be explored in further depth throughout the manual.

1. helper: A function type

2. type: A function type

3. if: control flow

4. else: control flow

3

5. foreach: control flow

6. true: boolean

7. false: boolean

8. import: utilized to import other WebLang definitions

In addition, each of the names of the primitive types in section 3.1 are reserved.

2.3 Comments

In WebLang, one can make single-line comments, as well as multi-line comments. In a
single line everything after // is a single line comment, as in the following two examples:

// This i s a s i n g l e l i n e comment
p o s t j o k e j o k e d e s t : S t r ing −> Nothing // t h i s i s a l s o a comment

To make multiple line comments, enclose content between /* and */:

/∗ This i s a comment
that spans s e v e r a l l i n e s
because i t l ook s b e t t e r
l i k e t h i s sometimes ∗/

2.4 Literals

WebLang Literals are type defined values that are interpreted exactly as they are defined.
There are literals for each primitive type in WebLang:

• JSON Literals

• Auth Literals

• Nothing Literals

See detailed descriptions of these primitives (section 3.1) outlining the composition of types.

2.5 Operators

WebLang uses the following operators that are reserved elements in the language. For more
information on the function of each operator, see the operators section below.

= -> − +
∗ / % > ≥
< ≤ == !=

4

2.6 Separators and Punctuation

Separators define scope and relations between variables, as well as start and end points for
function declarations.

• {} - curly braces organize scope and start/end of function declarations. They are
also utilized to define JSON objects (see Types section for more information)

• Whitespace - whitespace separates variable and function declarations. We consider
the ASCII SP, ASCII FF, and the ASCII HT characters to be whitespace.

• New line - the new line character separates two statements, as in python. We consider
ASCII LF and ASCII CR to be new line characters. An important caveat: due to the
fact that JSON can often be very long and unwieldy because of large data transfers,
it does not make sense to obey new line syntax with JSON. As such, the compiler will
ignore all new lines and whitespace within JSON types, utilizing the separators built
in to the types (for example braces/colons/commas for objects, and brackets/commas
for arrays). This way, users can structure JSON in ways that make clear and intuitive
sense to them.

3 Types

Types are primitive types paired with a predicate on that primitive type. A type with
name A could be written either as A, or as A[p(val)], where p is a predicate on a value
with primitive type the same as A’s primitive type, and val is a locally bound name
representing a constituent of A. A[p(val)] is a type with the same primitive type as A, but
with an additional predicate p.

3.1 Primitives

The primitive type hierarchy is as follows:

Any: the most general, least descriptive type of WebLang. Every other type is an
example of Any.

JSON: The majority of our primitives implement JSON, which is based on the JavaScript
ECMA 262 specification.

String: Weblang utilizes ASCII strings to represent textual data. Like Javascript,
a single character is treated as a single character String and we do not support
a type for chars.

Number: A primitive corresponding to a doubleprecision 64bit binary format
value

5

Object: A key-value pair container, with the key as a string and value as any-
thing. Keys and values are separated with an equals sign, and key-value pairs
are separated with commas.

Array: A traditional array structure.

Bool: A boolean representing true or false

Null: Absence of a value within a JSON object or array. Distinct from Nothing,
which is absence of a value for overarching Any type.

Auth: An authentication type to pass to APIs that may require it. Currently, we
only support OAuth2.

OAuth2: An authentication type in the form of a JSON object with predefined
keys. All keys are optional; keys include: api key, api pub, api secret.

Nothing: Absence of value within WebLang. Different from Null, which is absence
of value within a JSON object or array

Type: A value representing a Type

Parent-children relationships in the hierarchy are is-a relationships, so a descendant can be
used transparently as one of its ancestors. For example, a String can be used as a JSON
value, and any value can be used as an Any.
All values in WebLang are of a primitive type, except for functions, which are of type A
-> B, where A and B are primitive types.

3.2 Using Types

Any type with name A can be used as A or as A[p(val)]. Additionally, some primitive
container types have additional, more descriptive representations. The additional informa-
tion from these representations will sometimes be checked at compile-time, and are always
checked at run-time.

Array types also can be represented as:

[Type1 , Type2 , Type3]
[Type1 , Type2 , Type3 , . . .]
[Type1 , Type2 , Type3 . . .]

The first instance represents an array with three elements, which are of Type1, Type2, and
Type3 in that order.
The second instance represents an array that starts with three elements of those types, but
can contain anything afterward.
The third instance represents an array that contains an element of Type1 and then of

6

Type2, and then zero or more elements of Type3.

Object types also can be represented as:

{key1 : Type1 , key2 : Type2 , key3 : Type3}

This represents a JSON object that contains at least pairs with keys key1, key2, and key3
with types Type1, Type2 and Type3 respectively.

3.3 Function Types

When functions are declared, type annotations of the form A -> B are required. A function
is guaranteed at compile-time to be called with a value that is the same primitive type as
A, and to return the same primitive type as B. In addition, at runtime, the function’s input
is checked against A’s predicate, and the function’s output is checked against B’s predicate.
If either predicate fails, the program will exit with an appropriate error message.

3.4 Types as Values

Types can be assigned to variables as values, which is to say you can represent a type
through the use of an identifier.

3.5 Type checking

The built-in function : can be used to check if a value matches both the primitive type
and the predicate of a given type, with the form [value] : [type].

For example, 123 : Object would evaluate to false, 123 : Number[val < 10] would eval-
uate to false, and 123 : Number would evaluate to true.

3.6 User Defined Types

Users can define types that are derived from primitive types. There are effectively aliases
on other types. Users may use the following syntax:

type [name−of−type] [value−name] : [a l ready−e x i s t i n g−type]
[p r e d i c a t e on value−name]

as in:

type A a : B
p(a)

This will create a type called A and will behave as B, but with the additional predicate
p(a).
For example:

7

type I n t e g e r i : Number
i n t e g r a l i

This will create a new type Integer that is represented as a number, but will additionally
check that the number is integral.

4 Imports and Namespaces

import is a built-in function that takes an API specification and authorization information,
and returns a namespace with the API’s endpoints available.
import has the following type:

import : { address : Str ing ,
port : Number [i n t e g r a l (va l)] ,
au th requ i r ed : Bool ,
auth accepted : [S t r ing . . .] ,
endpoints : Object [keys (va l) : [Type . . .]] ,

} [! va l . au th requ i r ed | | va l . auth : Auth]
−> Nothing

• address is the server address, for example “http://google.com/” or “127.0.0.1”

• port is a number representing the port

• auth_required indicates whether the user needs to specify authentication

• auth_accepted is a list of names of Auth subtypes that are accepted by the API.
Strings that don’t match supported Auth subtypes are ignored.

• endpoints is a JSON object whose keys are endpoint names, and whose values are
Function Types that describe the type of the corresponding endpoint.

import brings the endpoints into the current namespace. If a name is bound to the result of
import, as in name = import , then the endpoints will be addressed as name.[endpoint].
If there are conflicting names in the namespace, a warning is shown at compile time, and
the existing names are overwritten.
The endpoints brought into the namespace by import behave as functions, with the corre-
sponding function type from their API specification.
When an endpoint is used, a network call is made to the server at the port with the given
authentication to that endpoint, with the endpoints arguments sent. Essentially, there are
two ways to use API calls in WebLang: user-defined or built-in. Since API calls in of and
themselves are a type, users may define custom API calls in their code. Alternatively, users
can include one of the premade API calls. To do this, the user places an import statement

8

at the beginning of the program follow.
An example of importing the reddit API with OAuth2 authentication:

r e d d i t a p i = {
address=”r e d d i t . com/ api / j son /” ,
port =8080 ,
auth requ i r ed = true ,
auth accepted = [OAuth2] ,
endpoints = {

g e t u s e r = St r ing −> Object { user name : Str ing ,
d a t e r e g i s t e r e d : Str ing , u s e r i d : Number } ,

g e t t o p p o s t = St r ing −> Object { p o s t t i t l e : Str ing ,
date pos ted : Str ing , upvotes : Number ,
comments : Array (Object { content : S t r ing }) } ,

w r i t e p o s t = Object { subredd i t : Str ing ,
content : Str ing , t i t l e : S t r ing } −> Nothing

}
}

r e d d i t = import (r e d d i t a p i + {
auth = oAuth2 {

ap i key = ”my api key ” ,
a p i s e c r e t = ”my api s e c r e t ”

}
})

5 Functions

Functions in WebLang take one argument and return at most one value. Operators, all
of which are built-in, however, may take two inputs. The function header consists of a
function name, a single argument, a colon, and the input and output types separated by
an arrow. The function body consists of a variable number of declarations and function
calls. An example function declaration foo that takes a String argument x and returns
nothing would be written as follows:

foo x : S t r ing −> Nothing
// statements here

WebLang functions can be called by stating the function name followed by its argument.
An example function call for foo defined above would be written as follows:

foo ” h e l l o ”

9

5.1 Endpoint Functions

Endpoint functions are the default function type in WebLang. Any function without the
helper reserved word at the beginning of the declaration is an endpoint function. When a
WebLang program is compiled, it generates a server binary and provides an endpoint for
each endpoint function. For example, having an endpoint function foo and a port defined
as 8000 will expose the /foo/ endpoint locally at 127.0.0.1:8000/foo.

5.2 Helper Functions

Helper functions in WebLang are user-defined functions that do not result in a new endpoint
upon compilation. These functions follow the same declaration syntax described above, but
are initiated with the reserved word helper. For example, the following is the declaration
for a helper function bar with String parameter x:

he lpe r Bar x : S t r ing −> Nothing
// statements here

5.3 Function calls

Functions are called by calling their identifier followed by an argument. As mentioned in
the import section, functions may be called from other namespaces when imported using
dot notation on the identifier we assigned their namespace.

foo ” h e l l o ”
r e d d i t . f oo ” h e l l o ” // i f we had imported ” r e d d i t ” as in the import example .

5.4 Variable Assignment from Function

A variable may be assigned the return value of a function by separating the two with a
single = sign. For example, the following sets the value of a variable exampleVar to the
return value of the function foo with argument “hello”:

exampleVar = foo ” h e l l o ”

5.5 Arguments

Each endpoint or helper function takes one argument of any WebLang type. Each operator
takes two arguments. All arguments passed to functions and operators are passed by value.
Note that because generally we expect functions to require more than one argument, we
expect this behavior to typically be passing in a JSON dictionary or array (as is almost
always the case with RESTful requests).

10

5.6 Recursion

Recursive function calls are formatted identically to traditional function calls. Both Helper
and Endpoint functions may be called recursively.

5.7 log

Log is a built in function that takes one argument as string. It prints whatever argument
it is given and print it to stdout. If the argument is not a string (i.e. a Number, JSON
object, etc.), it will attempt to cast it to string; if it is unable to do so, it will an error at
compile time. As such, it is highly recommended that user defined types have a way to
cast to string.

6 Control Statements

Weblang executes statements from top to bottom and left to right. But when using control
statements, this breaks up the flow of the execution by integrating logical execution of code
by using loops or branching with if/else statements.

6.0.1 Looping: foreach

The foreach statement allows the user to iterate over an array or a JSON object as in
python. If iterating over a JSON object, the loop will loop over the outermost keys in the
object.
Examples:

\\Statement w r i t e s to std out a l l the va lue s in array
fo r each [1 , 2 , ” h e l l o ”] va l {

l og va l
}

\\Statement w r i t e s to std out a l l the keys in array
obj = {” foo ” : ” bar ”}

f o r each arrKeys key {
l og key // w i l l j u s t p r i n t key to stdout

// In t h i s case , w i l l only p r i n t foo
}

Due to the fact that arrays and objects can contain multiple types, a common pattern in
WebLang is to check the type utilizing the : built in function within each loop and execute
based on that. For example:

11

f o r each [1 , 2 , ” h e l l o ”] va l {
i f (va l : Number)

l og va l+1 // only t r i g g e r s i f array conta in s Number
e l s e

l og va l
}

Because foreach operates on arrays or objects only, for loops as expected in Java or C must
be approximated. This can easily be done by creating an Array of Numbers and iterating
over that.

6.0.2 if else

The if statement tells the program to execute a certain block of code when a test evaluates
to true; there is an optional else clause that can follow an if should the if fail. Elses are
greedy and will latch on to the nearest if. Brackets can be used to encompass an if
statement, but if the body is only one line they are unnecessary.

\\Statement w r i t e s to std out a l l the va lue s in array
i f (t rue){

f o r each [1 , 2 , ” h e l l o ”] va l {
l og va l
}

}

\\Statement w r i t e s bar to stdout
i f (f a l s e)

l og ” foo ”
e l s e

l og ”bar”

7 Expressions

An expression is composed of one of the following:

• An operand followed by an operator followed by an operand

• Initializing an object

• Accessing a:

– Object

– JSON Object

12

– Array

• An expression between ()

• Any of the subsections below

7.1 Arithmetic

An arithmetic expression consists of an operand followed by one or more operators. Operands
can be variables, constants, and expressions.

”15” // Express ion eva lua t e s to St r ing
2 + 2 // Express ion eva lua t e s to Number 4
10 .1 + 1 .0 // Express ion eva lua t e s to Number 11 .1
{” foo ” :” bar ”} + {” bar ” :” foo ”}
// Express ion eva lua t e s to {” foo ” :” bar ” , ”bar ” : ” foo ”}

7.2 Function Call

A call to a function that returns a value is considered an expression.

po s t dad joke ”What time did the man go to the d e n t i s t ? Tooth hurt−y . ”
// Evaluates to Nothing

7.3 Object, Array

Values of an object can be accessed via dot notation as in Python: accessing the “color”
key of Object car is car.color.
Array values can be accessed utilizing bracket notation as in C, Python, or Java; accessing
the 5th element of array a is a[5].
Examples of the above are shown here:

obj = { ” array ” : [1 , 2 , 3] }
obj // Evaluates to Object { a r r a y : [1 , 2 , 3] }
Obj . array // Evaluates to JSON Array [1 , 2 , 3]
obj . array [0] // Evaluates to 1

7.4 Operators

An operator specifies a built in operation to be performed on operands. An operator can
have one or two operands depending on what purpose it serves.

13

7.4.1 Assignment Operator

The assignment operator is used to store values into variables. As with most well used
languages (Java, C, Python, etc.) Weblang uses “=” to store the value of the right side to
the variable specified by the left side. The left side of the assignment operator may not be
a literal or constant values.

obj = { ” array ” : [1 , 2 , 3] }

7.4.2 Arithmetic Operators

The standard arithmetic operations addition, subtraction, multiplication, division, and
modulo are included in WebLang.

1. Addition: Addition is performed on two values of type number. Examples are pro-
vided:

5 + 5 // Evaluates to 10
5 .4 + 3 .1 // Evaluates to 8 .5

2. Subtraction: Subtraction is performed on two values of type number. Examples are
provided:

5 − 5 // Evaluates to 0
4 .2 − 1 .3 // Evaluates to 2 .9

3. Multiplication: Multiplication is performed on two values of type number. Examples
are provided:

5 ∗ 5 // Evaluates to 25
4 .2 ∗ 3 .1 // Evaluates to 13 .02

4. Division: Division is performed on two values of type number. Examples are provided:

5/5 // Evaluates to 1
6 .4/2 // Evaluates to 3 .1

5. Modulo: Modulo is performed on two values of type number, but the numbers must
be whole integers. Examples are provided:

6 % 2 // Evaluates to 0
5 % 2 // Evaluates to 1

14

7.4.3 Conditional Operators

Conditional operators are used to determine how two operands relate to each other. As
such, they will always take two values as inputs. The result of an operator is either true

or false.

The conditional operators are:

Less than <

Less than or equal to ≤
Equality ==

Greater than >

Greater than or equal to ≥
Not Equal !=

Examples are as follows:

a = 1
b = 2
d = { a r r : [1 , 2 , 3] }
c = (a<b) // Evaluates to t rue
c = (<=x) // Evaluates to t rue
c = (w>x) // Evaluates to f a l s e
c = (w>=x) // Evaluates to t rue
c = d == Null // Evaluates to f a l s e
c = d != Null // Evaluates to t rue

Furthermore, conditional operators can be chained together using && and ‖ operators.
The && operator behaves like logical and, while the ‖ operator behaves like logical or.

c = true && f a l s e // eva lua t e s to f a l s e
c = true && true // eva lua t e s to t rue
c = true | | t rue // eva lua t e s to t rue
c = f a l s e | | f a l s e // eva lua t e s to t rue

7.4.4 Object Set Operators

Objects operators are used to either union, intersect or differentiate two objects, resulting
in a new one. The operators are un, in, and diff. These operators behave just like set
operators, where the operations are done on the keys of the object.

1. Union Operator: If keys match, then the union is done on the values.

15

A = {” foo ” : ” bar ”}
B = {” foo ” : ”one ”}
A un B // Evaluates to Object {” foo ” : [”bar ” , ”one”]}

A = {” foo ” : ” bar ”}
B = {” foo ” : [” bar ”]}
A un B // Evaluates to Object {” foo ” : [”bar”]} , removes d u p l i c a t e s

A = {” foo ” : ” bar ” , ”more ” : ” t e s t ”}
B = {” foo ” : 1}
A un B // Evaluates to Object {” foo ” : [”bar ” , 1]}

A = {” foo ” : ” bar ” , ”more ” : ” t e s t ”}
B = {” foo ” : 1 , ”more ” : ” in ”}
A un B // Evaluates to Object {” foo ” : [”bar ” , 1] , ” t e s t ” : [” t e s t ” , ” in ”]}

2. Intersection Operator: If keys match, then the intersection is done on the values

A = {” foo ” : ” bar ”}
B = {” foo ” : ”one ”}
A in B // Evaluates to Object {” foo ” : []}

A = {” foo ” : ” bar ”}
B = {” foo ” : ” bar ”}
A in B // Evaluates to Object {” foo ” : [”bar”]}

A = {” foo ” : ” bar ” , ”more ” : ”one” }
B = {” foo ” : ”two ” , ”more ” : [” one ”]}
A in B // Evaluates to Object {” foo ” : [] , ”more ” : [” one ”]}

3. Difference Operator: If keys match, then the difference is done on the values

A = {” foo ” : [”1” , ”2” , ”3”]}
B = {” foo ” : [”1” , ”2” , ”4” , ”5”]}
A d i f f B // Evaluates to Object {” foo ” : [” 3 ”] }

A = {” foo ” : [”1” , ”2” , ”3”]}
B = {” foo ” : [”4” , ”5”]}
A d i f f B // Evaluates to Object {” foo ” : [” 1 ” , ”2” , ”3”]}

It is possible to perform these operators on the keys rather than the values by first nesting
the two objects to be compared within ”wrapper” objects. This behavior may be included
in the standard library, depending on whether or not it is deemed useful enough.

16

7.5 Operator Precedence

When multiple operators are used, the operations are grouped based on rules of precedence.
Below is a list of precedence, if two or more operators have equal precedence, the operators
are applied from left to right. Parentheses can be used to manually overwrite WebLang’s
precedence rules.

1. Method or helper calls, object or array access

2. Object set operations

3. Multiplication, division

4. Addition, subtraction

5. Expressions

6. Assignment expressions

8 Compiler Output

The program outputted upon successful compilation will always be a RESTful server, which
is to say it will listen at a certain port and respond to HTTP requests at that port. As such,
WebLang programs can often be referred to as “servers”. Optionally, WebLang programs
can be run as scripts if they include a main endpoint and the appropriate command line
flag is invoked. The actual server that is created is written in C and linked. This C server
accepts and routes requests to the correct endpoint.

8.1 Running a Server

A server is run by navigating to the directory containing a compiled server, and running
./out (the default server name). Other names can also be supplied during compile time
with the -o flag.

8.2 Options when running a server

In addition to being able to specify command line arguments from within a server, all
servers have the following two options built in:

• -c: set to false by default. When this flag is set, the server will run as script, meaning
that the server will start up and automatically send itself a request to the /main/
endpoint. Prior to listening for requests, the server checks to see if the /main/
endpoint exists; if it does not it will throw a Runtime error. After successfully
running the /main/ endpoint, the server will terminate. If this flag is not utilized,

17

the main function will function the same way as any other endpoint (i.e. users can
call to /main/ from the web browser etc.)

• -p [number argument]: set by default to 8080. The port that the server should listen
at. The possible values for this are: 80, 443, and 1024-65535. Any other values will
result in the server not starting.

18

