Craft - Language Reference Manual

Daniel Tal (dt2479) [Manager]
Martin Fagerhus (mf2967) [Language Guru]
Abhijeet Mehrotra (am4586) [System Architect]
Roy Prigat (rp2719) [Tester]

1. Lexical elements
a. Identifiers
An identifier, or name, is a sequence of letters, digits, and underscores (_). The
first character cannot be a digit. Uppercase and lowercase letters are distinct
(case-sensitive). Name length is unlimited. The terms identifier and name are used

interchangeably.

b. Reserved Keywords and Symbols

element int color key up
world float M key down
event bool key id
start pair events
reset if new pos
def else delete this
return while speed
conditio |action angle bounce
n
health lives directio | import
n

c. Constants (as per C LRM)

i. Integer Constants
1. A sequence of digits is assumed to be a base 10 decimal number.
2. Digits 0 to 9 can be used
3. Ex. 654
ii. Real Number Constants
1. These are used to represent fractional (floating point) numbers.
2. Represented by a sequence of digits which represent the integer,
a decimal point, and a sequence of digits to represent the
fractional part.
3. Ex.5.7
iii. String Constants
1. A string constant is a sequence of zero or more characters, digits,
and escape characters.
2. Ex. “l am a string”
3. Ex. V'l am a string with quotation marks\””

d. Operators

+, - add, subtract

* 1, % multiplication, division, modulo
= assignment

> >= <, <= inequality operators

== I= equal to, not equal to

Qo
o

not, and, or

access

e. Delimiters

i. Parentheses: Used to show precedence in operational and expression
evaluation, to enclose parameters within function calls, and as
inseparable parts of our pair types.

ii. Commas: Used to separate arguments in function calls and to separate
values in pair data types.

iii. Semicolon: Used to end statements.
iv. Curly Brackets: Used to mark the start and end scope of functions,
loops, conditionals, and world definitions.

f. Whitespace
i. Only used to separate specific words/tokens.

g. Comments
i. Only one line comments allowed using “#” (hashtag symbol).

2. Data types

a. Primitive Data Types
i. Integer Types
1. Numbers of Integer type will be declared int
2. Syntax: int <name> = <integer number>;
3. Exiinta=123;
ii. Floating Point Types
1. Fractional numbers will be declared as float
2. Syntax: float <name> = <fractional number>;
3. Ex:floata=5.7;
iii. Boolean Types
1. Boolean values will be declared as bool/
2. A boolean value can be either true or false
3. Syntax: bool <name> = <boolean value>;
4. Ex: bool alive = false;

b. Non-primitive Data Types
i. Pair Types
1. pairis defined by two integer values, separated by a comma, and
enclosed by parentheses.
2. Anything except natural numbers (nonnegative) will be rejected as
well as any pair values that exceed the game grid size.

3. Syntax: pair <name> = (int,int);
4. Ex: pair object = (100,100);
5. Operations on Pair Types

a. Addition
i. Syntax: pair <name> = <pair type> + <pair type>;
i. Ex
pair pair 1 = (10,10);
pair pair 2 = (20,20);
pair new pair = pair 1 +
pair 2;
new pair == (30,30)

b. Subtraction
i. Syntax: pair <name> = <pair type> - <pair type>;

i. Ex
pair pair 1 = (10,10);
pair pair 2 = (20,20);
pair new pair = pair 2 -
pair 1;
new pair == (10,10)

c. Multiplication
i. Syntax: pair <name> = <pair type> * <pair type>;

i. Ex
pair pair 1 = (10,10);
pair pair 2 = (20,20);
pair new pair = pair 2 *
pair 1;
new pair == (200,200)
d. Division
i. Syntax: pair <name> = <pair type> / <pair type>;
i. Ex
pair pair 1 = (10,10);
pair pair 2 = (20,20);
pair new pair = pair 2 /
pair 1;
new pair == (2,2)

e. For operations it is only allowed to calculate results which
are natural numbers.

ii. Element Types
1. element is an object which is a part of the game's world.
a. Rectangular shape
b. Required attributes
size, direction, speed, color, position(can also be passed
as an argument at the time of object creation).
c. Additional attributes are optional
d. Size is described by a tuple, (x,y), supporting rectangular
shapes
e. Direction is the direction of the element
i. Direction can be any number of degrees.

ii. Initial support will be for 0, 90, 180, 270 degrees

iii. Placement of the element on the grid will be bound
to position of the element and it will rotate
accordingly based on direction.

iv. Examples below. The block, size==(1,2), is
attached at position==(2,2) in a 4x4 world. The
element is is placed at position (2,2) and situated
on the grid based on direction.

V.
|
|
=] | |
Vi. | 0 degrees
|
|
1] | |
Vii. | 90 degrees
|
|
= ||
viii. | 180 degrees
|
|
|
iX. | 270 degrees

2. Syntax:

element <name> {
size = (x,Vy)
direction = <int>;
color = <hex>;
speed = <int>;

3. Example:

a.

(0]

element square block {

size = (2,2);

direction = 0;

color = ffffff; # Black
speed = 0;

#This will create a black square block

fsize 2x2 (4 pixels)
#direction == 0, pointing at 0 degrees
#speed == 0, element not moving
3. Functions
a. Built-in functions:
Syntax Description

delete (element)

Removes element from the world

restart ()

Call the destructor (deletes/frees all
memory and resets the world)

add_event (event

)

The function adds the event passed into
the parameter to the global event loop
that runs in the global loop at every
clock tick.

b. User-defined functions
i. Defining a function:

def function name (args) {
return
return element;

ii. Calling a function:

function name (args);

4. Event blocks
a. Define events in the game with event
b. Syntax:

event (<element>) {
condition {
<some condition>
} action {
<some action that will happen if
condition == true>

}

c. Example:

event die(player p) {
condition {
p.health == 0;
} action {
p.lives = p.lives - 1;
world.reset () ;

5. Control Flow Statements
a. Conditional statements
i if/felse statement:

if (<condition>)
{

<statements>;

}

else {
<statements>;

b. While loops

while (<condition>) {

<statements>;

6. Program Structure and Scope

In order to run a program, the program file must contain a main ‘world’ function. Standard
files/libraries can be imported using ‘import’. The world function is the starting point of execution.

Each function/event/element within the file must be enclosed by curly brackets to determine its
scope. It can be created/defined in the main file before the ‘world’ function and then called within
‘world’ in order to implement/use the function/event/element within the game world.

Furthermore any new instance of an element defined within the world function, is automatically
added to the game world.

7. Sample Program

event die(player p) {
condition {
p.health == 0;
} action {
p.lives = p.lives - 1;
world.reset () ;

event win(player p, treasure t) {
condition {
p 'l t; # collision
} action {
world.end () ;

event moveUp (player p) {
condition {
key down (upArrow) ;
} action {

p.direction = 90;

event moveDown (player p) {
condition {
key down (downArrow) ;
} action {

p.direction = 270;

element wall {

size = (2,1);
direction = 0;
color = ffffff; # Black

speed 0;

element player {
size = (1,1);
direction = 0;
color = £2333f; # Blue
health = 100;
lives = 3;
speed = 1

element treasure {

size = (1,1);
speed = 0;
direction = 90;

color = 00ffff; # Yellow

world () {
size = (100,100);
player pl = new player ((0,0));
treasure t = new treasure((9,9));
wall wl= new wall(2,3);

add events to the game events loop,
elements

n(p,t));
e(p));
moveUp (p))

add event (wi
add_event (di
add event (
(

add_event (moveDown (p)) ;

and bind them to specific

