

COMS 4115

NEWBIE LANGUAGE REFERENCE MANUAL
Braxton Gunter (beg2119) - Tester Clyde
Clyde Bazile (cb3150) - Language Guru
John Anukem (jea2161) - Systems Architect
Sebastien Siclait (srs2232) - Tester
Terence Jacobs (tj2316) - Project Manager

Table of Contents

1. Introduction

2. Lexical Conventions

2.1 Character Set

2.2 Line Terminators

2.2.1 Physical Lines

2.2.2 Logical Lines

2.2.3 Explicit Line Joining

2.2.4 Indentation

2.3 Tokens

2.4 Comments

2.5 Keywords

2.6 Strings

3. Syntax and Semantics

3.1 Statements

3.1.1 Expression Statements

3.1.2 Declaration Statements

3.1.3 Control Flow Statements

3.1.4 Loop Statements

4. Types

4.1 Primitive Data Types

4.1.1 bool

4.1.2 char

4.1.3 num

4.1.4 string

4.2 Lists

4.3 Type Inference

4.4 Automatic Initialization

5. Operators and Expressions

5.1 Assignment

5.2 Operators

5.2.1 Arithmetic Operators

5.2.2 Logical Operators

5.2.3 String Operators

5.2.4 Relational Operators

5.2.5 List Operators

1. Introduction

Traditional high-level programming languages are often too cryptic and difficult for new users to

understand. The goal with Newbie is to create a pseudo-code like programming language aimed

to simplify the programming experience for beginner developers. This will allow new coders the

ability to design, implement and better understand common algorithms without the frustration of

learning specific programming syntax. Our standard library will specifically allow for easy

implementation of basic algorithms involving linked lists, graphs, and trees.

2. Lexical Conventions

This will describe how the lexical analyzer breaks a file into tokens.

2.1 Character Set

Newbie uses the 7-bit ASCII character set. If an 8-bit character set is recognized Newbie will

throw an error.

2.2 Line Terminators

2.2.1 Physical Lines

Programs are divided into lines by recognizing line terminators. Line terminators are any of the

standard platform line terminations:

● Unix form, ASCII LF (newline)

● Macintosh form, ASCII CR (return)

● Windows form, ASCII CR followed by the ASCII LF

The two characters CR immediately followed by LF are counted as one line terminator and all

three terminator sequences can be used interchangeably.

2.2.2 Logical Lines

The end of a logical is represented by the NEWLINE token. Statements cannot cross logical line

boundaries except for when using specified explicit line joining rules.

2.2.3 Explicit Line Joining

Two or more physical lines may be joined into logical lines using a single backslash (\) character

per line. The backslash must not be in a string literal or comment. Blank lines, lines without

whitespace or a comment terminates multi-line statements.

2.2.4 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the

indentation level of the line, which determines the the grouping of statements.

Tabs are replaced by four spaces and the total number of characters up to and including the

replacement characters must be a multiple of four even if a mixture of tabs and spaces are used.

The total number of spaces preceding the first non-blank character determines the level of

indentation. Indentation cannot be split over multiple physical lines. The whitespace up to the

first backslash determines the indentation.

The indentation level of consecutive lines are used to generate INDENT and DEDENT tokens,

using a stack as follows:

Zero is pushed to the stack before any line is read and will not be popped off. The

numbers pushed onto the stack will always be strictly increasing from bottom to top. At

the beginning of each logical line, the line’s indentation level is compared to the top of

the stack. If it is equal, nothing happens. If it is larger, the indentation level is pushed to

the top of the stack and one INDENT token is generated. If it is smaller, the indentation

level must be one of the numbers occurring on the stack. All larger indentation levels are

popped off and a DEDENT token is generated for each. At the end of the file, a

DEDENT token is generated for each number remaining on the stack that is larger than

zero.

**Correctly formatted example, *=space, <tab>=tab

define foo with params bar

* * * * if len(bar) equals 1

* * * * * * * * return bar

<tab>set new_bar to new []

* * * * for i from 0 to len(bar)

* * * * <tab> for j from 0 to len(bar)

* * * * * * * * * * * * new_bar = new_bar + bar[i : j]

* * * * * * * * <tab>new_bar = new_bar + bar[j :]

* * * * * * * * new_bar = new_bar + bar[i :]

<tab>return new_bar

2.3. Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals, operators,

and other separators. Spaces, tabs, and newlines can be used interchangeably to separate

tokens. Some whitespace is always required to separate tokens.

2.4. Comments

Single line comments will be signified by two backslashes like //. Multiline comments

will be enclosed by the following characters /* … */. Comments will not nest, and they

will not occur within string or character literals. Comments are ignored by the syntax;

they are not tokens.

2.5. Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

and

or

class

return

true

False

Greater

If

break

continue

null

def

Else

less

 While

not

equals

print

for

With

than

Params

no

each

in

to

from

2.6. Strings

Strings are represented by a sequence of characters surrounded by double quotes (”) and are

immutable.

3. Syntax and Semantics
3.1 Statements

 Newbie supports expression, declaration, control flow and loop statements.

3.1.1 Expression Statements

 An expression statement is a statement which must be evaluated.

3.1.2 Declaration Statements

Variables in Newbie utilize type-inference (4.3) and are statically-typed. Must assign

some variable to any given new variable.

set team_size to 5

3.1.3 Control Flow Statements

The if statement is used to execute the block of statements in the if-clause when a specified

condition is met. If the specified condition is not met, the statement is skipped over until any of

the condition is met. If none of the condition is met, the expressions in the else clause (when

specified) will be evaluated. Keywords are in bold.

if expr

 statement

else if expr

 statement

else

 statement

3.1.4 Loop Statements

The while statement is used to execute a block of code continuously in a loop until the specified

condition is no longer met. If the condition is not met upon initially reaching the while loop, the

code is never executed. ‘for each’ can only be used on iterable structures, i.e., strings and list.

Example:

while expression

statement

for each variable in list

statement

for idx from 1 to 100

 statement

4. Types
4.1. Primitive Data Types

Newbie will have 4 primitive data types: bool, char, num, string

4.1.1 bool

bool represents a simple boolean value, either true or false. They can be declared as

follows:

set PLT_is_great to true

set Edwards_is_boring to false

4.1.2 char

char are single ASCII characters or an escape sequence followed by a character

contained in single quotes. They can be declared as follows:

set p to ‘P’

set l to ‘l’

set t to ‘t’

It is a compile-time error for the character following the single character or escape

sequence to be anything other than a '.

4.1.3 num

num represents both integers and floating point numbers. num types are 32-bits and

follow IEEE 754 standard. Because there is no distinguishing factor between integers and

floating point numbers, it is acceptable to declare numerics in a variety of ways:

set plt to 4115

set edwards_age to 57

set grade to 57.0

Given that num represents both integers and floats, boolean operations will ignore

decimals as well. For example:

grade equals edwards_age // true

If at least one of the operands are floating point then the result will also be a floating

point.

4.1.4 string

A string consists of a collection of characters enclosed in double quotes, such as ”. . . ”. It

is possible to index through a statically declared string, but it is not possible to

manipulate the data contained in the string. The string datatype supports all ASCII

characters. To insert the " character in a string, use \" to avoid ending the string. Strings

are iterable.

set plt to “COMS 4115”

set hello to “Hello world, PLT is a \”great\” class”

4.2. Lists

In newbie, we will have only one type of collection: Lists. A List is represented by a sequence of

comma-separated elements enclosed in two square brackets [...]. Elements can be accessed by

their positions in the list, beginning with the zero index. The List is a mutable data structure,

which means that it supports functions to append, remove, or update its values. Lists can contain

primitives or objects, but not a mix of both. Within a List of primitives, each element must be of

the same type – for example, a List may not hold a collection of both num and string elements.

Within a List of objects, all elements must be of the same type.

set L to [‘N’,’E’, ‘W’, ‘B’]

set L to L + ‘I’ // [‘N’, ‘E’, ‘W’, ‘B’, ‘I’]

set L[4] to ‘E’ // [‘N’, ‘E’, ‘W’, ‘B’, ‘E’]

L[7] // error

4.3. Type Inference

Newbie will contain a robust type inference system. Given an expression, it will be determine

variable type at compile time. This will make it easier for users as they no longer need to declare

parameter or variable types. As such, if we declare:

set coms to 4115

set class to “plt”

set class_is_great to true

set grade to ‘p’

 the compiler will interpret these variables as a num, string, bool, and char respectively. This will

extend to more advanced data types,such as Lists, as well. For example, in the expression:

set team to [“Brax”, “Clyde”, “John”, “Sebas”, “TJ”]

team will be interpreted as a list of strings. This type inference will be done using the hindley

milner method with a standardized notation for common data types.

4.4 Automatic Initialization

During compile-time, we will be identify all variables and their corresponding types. These

variables will be automatically initialized to predictable default values. This means that variables

do not need to be explicitly declared or initialized. Primitives are automatically initialized to a

default value depending on their type. Lists are automatically initialized to their empty states.

Type Default Value

bool False

char null

num 0

string null

List []

5. Operators and Expressions
5.1 Assignment

The = operator or (to) can be used to assign the value of an expression to an identifier.

set x = 5

set x to 5 // same as above

With type inference, the variable x is automatically declared without having to declare the type.

Assignment is right associative, allowing for assignment chaining.

a = b = 10 // Set both a and b to 10

set a to b to 10 // same as above

5.2 Operators

5.2.1 Arithmetic Operators

The arithmetic operators consist of +, - ,*, /, ^, and %. The order of precedence from highest to

lowest is the ^ exponentiation operator, the unary - followed by the binary * and / followed by

the binary + and -.

5.2.2 Logical Operators

The logical operators consist of the keywords and, or, and not. The negation operator not

keyword inverts true to false and vice versa. The logical operators can only be applied to boolean

operands. The and keyword joins two boolean expressions and evaluates to true when both are

true. The or keyword joins two boolean expressions and evaluates to true when both are true.

5.2.3 String Operators

String access is denoted by square brackets enclosing an integer in the range of the length string.

It returns the String indexed by the integer.

set a to "Hello world!"

print a[0] // prints "H"

String concatenation is denoted by the binary + operator.

set a to "Hello"

set b to " world!"

set c to a + b // "Hello world!"

5.2.4 Relational Operators

 Relational operators consist of >, <, >=, <=, == and != which have the same precedence. For

primitive types, the equality comparison compares by value. == compare structurally while the is

keyword compares physically. The == and != operators are valid for primitives and lists

containing primitives.

set a = 1

set b = 1

set print a == b // True

set print a < b // False

set print a >= b //True

The above could be written as:

set a to 1

set b to 1

print a equals b

print a less than b

print a greater than or equal to b

5.2.5 List Operators

Lists support the following operations:

Length - returns the length of the list

set a to [4, 5, 6]

length(a) // 3

Access - returns the element at an index

set a to [4, 5, 6]

a[0] // 4

Update - updates the element at an index

set a to [4, 5, 6]

set a[1] to 7

a[1] // 7

Insertion - inserts an element at an index and return it

set a to [4, 5, 6]

insert(a, 1, 8) // a == [4, 8, 5, 6]

Removal - removes the element at an index and return it

set a to [4, 5, 6]

remove(a, 0) // a == [5, 6]

Push/Enqueue - inserts an element at the end of the list and return it

set a to [4, 5, 6]

push(a, 7) // a == [4, 5, 6, 7]

enqueue(a, 8) // a == [4, 5, 6, 7, 8]

Pop/Dequeue - removes the last element and returns it

set a to [4, 5, 6]

pop(a) // a == [4, 5]

dequeue(a) // a == [5]

