
Gantry

Language Reference Manual

Audrey Copeland (asc2182), Walter Meyer (wgm2110),

Taimur Samee (ts2903), Rizwan Syed (rms2241)

October 16, 2017

1. Introduction

The Gantry Language is designed to make algorithmic processing of JSON data simpler.

Gantry will allow for the programmatic manipulation of JSON data by implementing C-like

syntax and semantics along with JSON-like1 data types and structures.

2. Lexical Conventions

2.1 Tokens

Gantry has five types of tokens: identifiers, keywords, operators, constants, and separators.

2.1.1 Comments

Comments are lines beginning with two forward slashes, or blocks beginning with /* and

ending with */ .

// This is a comment

/*

This is a comment

in block format

*/

2.1.2 Identifiers

1http://www.ietf.org/rfc/rfc4627.txt

1

http://www.ietf.org/rfc/rfc4627.txt

An identifier, or variable name, is a sequence of alphanumeric characters or underscores that

must begin with a letter. Identifiers are case-sensitive and may not be a Gantry keyword.

2.1.3 Keywords

null int float

string object bool

true false if

elif else continue

break return for

while

2.1.4 Operators

Operator Syntax Operands

Arithmetic a + b, a - b, a * b, a / b int, float

Assignment a = b int, float, bool, string

Equal a == b int, float, bool, string

Not Equal a != b int, float, bool, string

Comparison a <= b, a <b , a >= b, a >b int, float

Logical AND a && b bool

Logical OR a‖b bool

Logical NOT !a bool

Concatenation aˆb string

See section 3.3 for the order of operations.

2.1.5 Constants

There are four types of constants: int, float, bool, and string.

2.1.5.1 int

An int is a sequence of numeric characters [0-9] in decimal notation. They are 32-bit signed

integers in the range of -2,147,483,648 to 2,147,483,647. An int must contain at least one

digit.

2.1.5.2 float

Floats are real numbers with integer and decimal parts separated by a decimal point. They

are 64-bit signed values in the range −3.4 × 10−38 to 3.4 × 1038, with precision of up to 6

decimal places.

2.1.5.3 bool

2

Boolean values are true and false.

2.1.5.4 string

A string is an immutable sequence of zero or more ASCII characters or character escape

sequences.

2.1.5.4.1 Character Escape Sequences

Character escape sequences allow for the use of certain ASCII characters in strings that

overlap with language tokens as well as certain non-printable or spacing characters. The

backslash character ‘\’ signifies the beginning of a character escape sequence. The following

character escape sequences are supported:

• \n yields a newline

• \r yields a carriage return

• \t yields a tab

• \b yields a backspace

• \\ yields a backslash

• \f yields a form feed

• \” yields a double-quote

3. Expressions

An expression in Gantry represents a value. Expressions consist of one or more operands

and zero or more operators, where only one operator can exist between two operands. For

example:

42

2 + 2

3 - 1

-5.0

3 / 2

Expressions can also be calls to functions, array subscripts, etc.

foo(3)

bar[2]

3.1 Functions

A function in Gantry must be declared in the following format:

3

<type> <identifier> (optional typed comma-separated list of parameters) { statements }

A function must be declared with and return a single type. A function may also include a

list of typed and comma-separated parameters that will be lexically scoped into the body of

the function.

Listing 1: Function Declaration

1 int repMsg(int times , string message) {

2 for (int i = 0; i <= times; i++) {

3 print(message ^ "\n");

4 }

5 return 0;

6 }

3.2 Built-In Functions

Gantry includes nine built-in functions to handle some fundamental operations that are use-

ful for interacting with JSON-formatted data.

3.2.1 jsonify()

The jsonify() function takes an object as a parameter and converts the object into a JSON-

formatted string. e.g.:

Listing 2: jsonify()

1 string course = "PLT";

2 int students = 125;

3 string location = "NWC";

4 int [] my_arr = [1,2,3]

5 int x = 42;

6 int y = 2;

7 object course_obj = {

8 string course : course;

9 int students : students;

10 string location : location;

11 int [] my_arr : [4, 5, 6];

12 int y : x + y;

13 object my_stuff : {

14 string location: course_obj.location;

15 string location2: location;

16 int [] my_arr = my_arr;

17 int [] my_arr_2 = course_obj.my_arr;

18 };

4

19 };

20
21 string course_str = jsonify(course_obj);

22 print(course_str);

23 // prints {course :"PLT", students :125, location :"NWC", my_arr :[1,2,3],

24 // y:44, my_stuff: {location :"NWC", location2 :"NWC", my_arr :[1,2,3],

25 // my_arr_2 :[4 ,5 ,6]}}

3.2.2 objectify()

The objectify() function takes a string as a parameter and attempts to produce a represen-

tation of that JSON-formatted string as an object with its nested component data types. If

the objectify function is passed a string that does not represent an object, the function will

return { null }. e.g:

Listing 3: objectify()

1 string str = "{course :\" PLT\",students :125, location :\" NWC \"}";

2 object course_obj = objectify(str);

3 string course_name = course_obj.course;

4 int course_enrollment = course_obj.students;

5 string course_location = course_obj.location;

6 print(course_name);

7 // prints "PLT"

3.2.3 arrify()

The arrify() function takes a string as a parameter and attempts to produce a representation

of that JSON-formatted string as an array. If the arrify function is passed a string that does

not represent an array, the function will return [null]. e.g:

Listing 4: arrify()

1 string str = "[{ course :\" PLT\",students :125, location :\" NWC\"},

2 {course :\"CS Theory\",students :200, location :\"NWC \"}]";

3 string [] courses_arr = arrify(str);

4 object first_course = courses_arr [0];

5 object second_course = courses_arr [1];

6 string first_course_name = first_course.course;

7 string second_course_name = second_course.course;

8 string output_string = first_course_name ^ " and " ^ second_course_name;

9 print(output_string);

10 // prints "PLT and CS Theory"

5

3.2.4 length()

The length() function takes an array or a string as a parameter and returns the number of

elements in the array or string.

Listing 5: length()

1 string [] student_arr = ["Joe", "Bob", "Alan"];

2 int arr_length = length(student_arr);

3 print(arr_length);

4 // prints 3

3.2.5 slice()

The slice() function takes a string as a parameter with two indices. It is exclusive in that it

returns a string that includes the character at the first index and it excludes the character

at the second index.

Listing 6: slice()

1 string student_name = "Sandy";

2 string first_letter = slice(student_name , 0, 1);

3 print(first_letter);

4 // prints "S"

5
6 string new_name = "M" ^ slice(student_name , 1, 5);

7 print(new_name);

8 // prints "Mandy"

9
10 string second_new_name = "M" ^ slice(student_name , 1, 10);

11 print(second_new_name);

12 // prints "Mandy"

13
14 bool new_names_equal = (new_name == second_new_name);

15 print("Are the new names equal?")

16 if (new_names_equal) {

17 print("Yes")

18 } else {

19 print("No")

20 }

21 print("Are the new names equal? " ^ new_names_equal);

22 // prints "Are the new names equal? Yes"

23
24 print("Old name : " ^ student_name ^ " New name : " ^ new_name);

25 // prints "Old name: Sandy New name: Mandy"

6

3.2.6 print()

The print() function takes a parameter of any type defined in our language and print its

string representation.

Listing 7: print()

1 string course_name = "PLT";

2 print("This is the course name: "^ course_name);

3 // prints "This is the course name : PLT"

3.2.7 to string()

The to string() function takes a parameter of any type defined in our language and returns

it as a string.

Listing 8: to string()

1 int course_enrollment = 3;

2 string course_enrollment_string = to_string(course_enrollment)

3 print(course_enrollment_string);

4 // prints 3

3.2.8 http get()

The http get() function takes a server and port as a parameter along with a URI, and sends

an HTTP GET request.

Listing 9: http get()

1 /*

2 Returns a json object of containers running on

3 a particular Docker engine.

4 */

5 string uri = "/v1.19/ containers/json";

6 string cons = http_get("192.168.0.9", 80, uri);

7 object [] cons_arr = arrify(cons);

8 print(cons_arr);

7

3.2.9 http post()

The http post() function takes a server, port, URI, and POST data as parameters to form

an HTTP POST request.

Listing 10: http post()

1 /*

2 Returns a json object of a newly created container

3 running on a particular Docker engine.

4 */

5 string post_data = "{"Image": "centos", "Cmd": ["echo", "hello world"]}";

6 string uri = "/v1.19/ containers/create";

7 string con = http_post("192.168.0.9", 80, uri , post_data);

8 object con_obj = objectify(con);

9 print(con_obj);

3.3 Operator Precedence

The following table lists the operator precedence. Operators with a lower numeric value are

considered higher priority.

Precedence Operand Description Associativity

1 ()

[]

.

++ --

Parentheses

Brackets(array access)

Member selection

Postfix increment/decrement

Left-to-right

2 + -

!

Unary plus/minus

Logical negation

Right-to-left

3 * / Multiplication Division Left-to-right

4 + - Addition, Subtraction Right-to-left

5 < <=

>= >

Relational less-than/or equal to

Relational greater-than/or equal to

Left-to-right

6 ˆ String Concatenation Left-to-right

7 == != Relational Equality Operators Left-to-right

8 && Logical AND Left-to-right

9 || Logical OR Left-to-right

10 = Assignment Right-to-left

11 , Comma for Next Argument Left-to-right

8

4. Statements

A statement in Gantry performs an action such as evaluation or control-flow. A statement

may also contain expressions.

4.1 Expression-Statements

While statements differ from expressions in that an expression represents a value and a

statement performs an action, we can combine these two concepts syntactically by adding

a succeeding semi-colon to any expression. This produces an expression-statement wherein

the value represented by the expression is evaluated only because it is also a statement.

Listing 11: Expression-Statements

1 42;

2 2 + 2;

3 3 - 1;

4 foo();

5 bar();

4.2 Control-Statements

Note that a conditional containing a type other than a boolean will evaluate to true only if

it is not empty or non-zero. e.g. a non-zero integer or float, a not empty string, a not empty

array, or a not empty object.

Listing 12: If-Statement

1 if (value) {

2 print(value);

3 }

4 elif (value_2) {

5 print(value_2);

6 }

7 else {

8 print(value_3);

9 }

Listing 13: While-Loop

1 while (value) {

2 print(value);

3 }

9

Listing 14: For-Loop

1 for (int i = 0; i <= 3; i++) {

2 print(i);

3 }

4.3 Jump statements

Jump statements cause unconditional jumps to other parts of the code, allowing for the

transfer of control to other parts of the program.

4.3.1 continue

Continue statements pass control back to the enclosing conditional while or for statement.

Listing 15: continue

1 while(x < 4) {

2 continue;

3 x++

4 }

Note that the code underneath the continue statement is never executed, so the loop carries

on forever.

4.3.2 break

Break statements terminate the execution of the enclosing while or for loop. Control then

passes to the succeeding statement outside of the loop body.

Listing 16: break

1 while(x < 4) {

2 break;

3 x++

4 }

Unlike in the example for continue, the loop terminates at the break statement. The variable

still does not increment, but there is not an infinite loop, as the loop ends as soon as break

is executed.

10

4.3.3 return

Return statements end the current function and return control to the caller. Any number of

return statements are allowed in a function, but each return must ony return a single value

that matches the return type of the function it is within. Note that a function of return type

null will not support statements that return a value.

Listing 17: return

1 boolean isHeader(string s) {

2 if(s) {

3 return true;

4 } else {

5 return false;

6 }

7 }

4.4 Comparison Operators

4.4.1 Equality Operators

There are two equality operators == and ! = which can be used to evaluate the equality of

the content of two operands. Such operands must be of the same type, where valid types

are int, float, bool, and string. The equality evaluation will return a boolean value of either

true or false.

4.4.2 Relational Operators

There are four relational operators <, >, <=, and >= which can be used to compare two

operands. Such operands must be of the same type, where valid types are int and float. The

relational evaluation will return a boolean value of either true or false.

4.4.3 Logical Operators

There are three logical operators && (AND), || (OR), and ! (NOT), where AND and OR

evaluate two operands, and NOT evaluates a single operand. All operands must be of type

bool. The logical evaluation will return a boolean value of either true or false.

4.7 Assignment Expressions

An assignment expression assigns a value to an identifier. An assignment expression must

include a type and a value to which the identifier will be initialized.

11

Valid types are bool, int, float, string, array, and object. Note that an object is a composite

type and an array is an aggregate type with a special declaration syntax outlined in section

4.7.2.

4.7.1 Identifiers

Identifiers must be declared and initialized in the following format:

<type> <identifier> = value of type;

Listing 18: Identifier Declarations

1 int y = 42;

2 // initializes an integer named y with a value of 42

See section 4.7 for valid types.

4.7.2 Arrays

Arrays must be declared and initialized in the following format:

<type> [] <identifier> = [comma-separated values of type]

Listing 19: Array Declarations

1 int [] exampleArray2 = [1 ,10 ,100];

2 // initializes an array of integers

Subscripts may be used to access or modify individual elements of an array. A subscript

may consist of any expression that evaluates to an integer, as long as the integer is within

the bounds of the array. Array indices start at 0.

Listing 20: Array Subscripting

1 int [] exampleArray2 = [1 ,10 ,100];

2 int val2 = exampleArray2 [1];

3 // val2 is 10

4 exampleArray2 [1] = 20;

See section 4.7 for valid types.

12

4.7.3 Objects

Objects must be declared and initialized in the following format:

Listing 21: Object Declarations

1 int x = 1;

2 object v = { int i: 1, int j: x, string j: "hello world" }

3 // initializes an object with two integers and a string

Object dot notation can be used to access or modify the value of a key that is a member of

an Object. Dot notation can also be chained if there are nested objects.

Listing 22: Object Dot Notation

1 object v = { int i: 1, int j: x, string j: "hello world" }

2 int j = v.i;

3 // value of j = 1

See section 4.7 for valid types.

5. Grammar

Terminals are in italics.

program:

declaration-listopt eof

declaration-list

declaration

declaration-list declaration

declaration

statement

function-declaration

type-specifier:

int

float

object

string

bool

13

null

statement-list:

statement

statement-list ; statement

statement:

for-statement

if-statement

while-statement

jump-statement

expression-statement

function-parameter:

type-specifier identifier

function-parameter-list:

function-parameter

function-parameter-list, function-parameter

function-declaration:

type-specifier identifier (function-parameter-listopt) { statement-list }
type-specifier [] identifier (function-parameter-listopt) { statement-list }

function-expression:

identifier (expression-listopt)

expression:

identifier

constant

array-expression

object-expression

arithmetic-expression

comparison-expression

logical-expression

assignment-expression

string-concat-expression

arithmetic-expression:

expression + expression

expression − expression

expression ∗ expression

expression / expression

14

expression ++

expression −−

comparison-expression:

expression < expression

expression > expression

expression <= expression

expression >= expression

expression == expression

expression ! = expression

logical-expression:

expression && expression

expression || expression

!expression

string-concat-expression:

expressionˆexpression

assignment-expression:

identifier = expression

type-specifier identifier = expression

identifier [] = expression

type-specifier [] identifier = expression

expression-statement:

expression ;

assignment-expression ;

function-expression ;

for-statement:

for (expression ; expression ; expression) { statement-list }

if-statement:

if (expression) { statement-list }
if (expression) { statement-list } else { statement-list }
if (expression) { statement-list } elif (expression) { statement-list } else { statement-

list }

while-statement:

while (expression) { statement-list }

jump-statement:

15

break ;

continue ;

return expression ;

object-expression:

{ key-value-listopt }

key-value-list-opt:

key-value-list

key-value-list:

key-value

key-value-list, key-value

key-value:

type-specifier identifier : expression

array-expression:

[expression-listopt]

expression-list:

expression

expression-list , expression

expression-list-opt:

expression-list

object-expression-list:

object-expression

object-expression-list, object-expression

identifier-list:

identifier

identifier-list, identifier

constant-list:

constant

constant-list, constant

constant:

true

false

null

16

literal

literal:

int-literal

float-literal

string-literal

17

