
Who am I
● Jared Pochtar

● TAed this class a few years ago

● Coauthored an unpublished paper with with Prof. Edwards

● Worked at 4 different kinds of compilers projects across as many companies

● Founded Pagedraw, a compilers startup

Compilers in Industry

Programming Language design is a very unsolved problem

n-stage Compilers are a very well understood way to
approach software engineering problems

Open questions in Programming Languages

Nonlinear control flow
● Asynchrony and Distributed Computing
● Different from parallelization! That’s a whole other topic of PL research
● Exception Handling

Devtools outside or adjacent to the code itself— IDEs+
● Coffeescript live compiler
● Autocomplete / inline type checking / debuggers

Programming in VR?

This class for the next couple weeks

Open questions in Programming Languages

Nonlinear control flow
● Asynchrony and Synchronization.
● Different from parallelization! That’s a whole other topic of PL research
● Exception Handling

Devtools outside or adjacent to the code itself— IDEs+
● Coffeescript live compiler
● Autocomplete / inline type checking / debuggers

Programming in VR?

that you could think about for your project!

New conventional uses of compilers
● Optimize database queries. Compile the SQL, optimize the query by rewriting it with cheaper

operations, then Just-in-time compile it.

● JITting JS for v8, Sunspider, Nitro

● WASM and asm.js

● GPU, TPU languages and others targeting specialized hardware

● Cross-compile ML algorithms for different platforms (Tensorflow vs whatever the new thing is)

● Coffeescript2 just came out— we’re still working on ways to improve Javascript, since we’re stuck
with it and it’s pretty ugly, even though there’s some real gold nuggets in there.

● Sourcemaps— correlating lines in the generated code with lines in the source code. Killer for
debugging languages that compile to Javascript with the browser-based Chrome Web Inspector,
which wants to work with Javascript even though you don’t

Unconventional uses of compilers
Auto-add type annotations to code
● Python 3: Pinfer.py https://github.com/python/mypy/tree/master/pinfer
● Typescript/Flow: https://maierfelix.github.io/Iroh/

Migrate a codebase
● https://github.com/jaredp/coffeescript-to-typescript

Combine Python (CPython) and Javascript (v8)

https://github.com/python/mypy/tree/master/pinfer
https://maierfelix.github.io/Iroh/
https://github.com/jaredp/coffeescript-to-typescript

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

def loop(n):
 return [fib(i) for i in range(n)]

def log(line):
 print(line)

def mapInt2Str(nums):
 return [str(n) for n in nums]

Python

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

def loop(n):
 return [fib(i) for i in range(n)]

def log(line):
 print(line)

def mapInt2Str(nums):
 return [str(n) for n in nums]

from typing import List, Dict, Set, Tuple,
Callable, Pattern, Match, Union, Optional

def fib(n: int) -> int:
 if n < 2:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

def loop(n: int) -> List[int]:
 return [fib(i) for i in range(n)]

def log(line: str) -> None:
 print(line)

def mapInt2Str(nums: List[int]) -> List[str]:
 return [str(n) for n in nums]

Python3

Pinfer.py
BEFORE: simple.py

def fib(n):
 if n < 2:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

def loop(n):
 return [fib(i) for i in range(n)]

def log(line):
 print(line)

def mapInt2Str(nums):
 return [str(n) for n in nums]

AFTER: simple.py

from typing import List, Dict, Set, Tuple,
Callable, Pattern, Match, Union, Optional

def fib(n: int) -> int:
 if n < 2:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

def loop(n: int) -> List[int]:
 return [fib(i) for i in range(n)]

def log(line: str) -> None:
 print(line)

def mapInt2Str(nums: List[int]) -> List[str]:
 return [str(n) for n in nums]

mypy/pinfer/p.py simple test-main.py simple.py

Unconventional uses of compilers
Auto-add type annotations to code
● Python 3: Pinfer.py https://github.com/python/mypy/tree/master/pinfer
● Typescript/Flow: https://maierfelix.github.io/Iroh/

Migrate a codebase
● https://github.com/jaredp/coffeescript-to-typescript

Combine Python (CPython) and Javascript (v8)

https://github.com/python/mypy/tree/master/pinfer
https://maierfelix.github.io/Iroh/
https://github.com/jaredp/coffeescript-to-typescript

Applying compilers to things that don’t
look like source code

Pagedraw

You can really have as many of these
as you like

Syntactic Sugar

code you write

def loop(n):
 return [fib(i) for i in range(n)]

code the bytecode interpreter sees

def loop(n):
 _list = []
 for i in range(n):
 _list.append(n)
 _temp = _list
 return _temp

Python

Pagedraw

Optimization Passes Optimization Passes

// function call syntax

add(
 subtract(4, n),
 times(5,
 add(a, b)
)
)

// Java (without optimizations)

(((4) - (n)) + ((5) * ((a) + (b))))

// Java (incorrectly without parens)
// 4 - n + 5 * a + b

X to Java (hypothetical)

// Java (with optimizations)

4 - n + 5 * (a + b)

Pagedraw

