Repurposing an HP Calculator
Lab 2: Listening to the Keyboard
CS & CE Art of Engineering Project

Stephen A. Edwards

Spring 2016

Abstract

In this lab, you will write software that will read the keyboard on the HP 20b and display
which key is pressed.

1 The Matrix Keyboard

Figure 3 shows the schematic for the HP 20b’s keyboard, which is a standard matrix type
consisting of row and column wires that can be shorted together by the keys. It is connected
to pins on the saMyL chip that can be driven by a parallel I/O controller: a peripheral that
enables software to control and read the state of each pin. Figure 1 is a more concise table that
lists the pair of pins that each key shorts together when pressed.

The lab2.zip file (on the course website) adds keyboard.h and keyboard.c to the files from
lab1.zip. Figure 2 lists the keyboard-related functions defined in keyboard.c.

To set up the peripherals to read the keyboard, call keyboard_init. This turns pins PCo-
PC6 (the “columns”) into outputs and pins PC11-PCis, and PC26 into inputs with pull-up
resistors. The pull-up resistors ensure that if no key along a row is shorted the pin will have
the value 1.

To see if a particular key is pressed, set the key’s column to o, every other column to 1, and
read the key’s row. If the key is pressed, the key’s row will return o, otherwise it will return 1.
The easiest way to do this is to call the helper functions in keyboard.h.

main.c contains a program that reads the topmost keys on the keyboard and reports when
they are pressed.

2 What To Do

 Write a function keyboard_key that returns a code that indicates either which key is
currently being pressed or that no key is being pressed. Add this function to keyboard.c.

« Modify the code in main.c to use this function to report which key is being pressed.

((rows))
PCu PCi2 PCi13 PCi4 PCi5 PC26

PCo N I'YR PV PMT FG Amort
. PC1 CshFl IRR NPV Bond % RCL
£ PCz2 | INPUT () -«
_g PC3 A 7 8 9 +
S PCy v 4 5 6 x

PCs shift 1 2 3 -

PCeé6 o = +

Figure 1: The HP 20b’s keyboard layout. When pressed, each key shorts two pins: one for its
column, one for its row.

// Initialize the keyboard and set all columns high
// with pullups on the rows
extern void keyboard_init(void);

// Set the given column high
extern void keyboard_column_high(int column);

// Set the given column low
extern void keyboard_column_low(int column);

// Return true if the row is high, false otherwise
extern int keyboard_row_read(int row);

Figure 2: Keyboard helper function declarations from keyboard.h

ROWS

ROW4

& 3
B 2
.41
v% mr x . 2hE | ZLdNYMM OI4/0S14/920d
N SMOY o e 1 12310d/LX1/5Z0d
o 10d/LaX¥/FZOd
2 | 1aoiLiomodiezod
%1 ﬂﬁ_l wéﬁ ﬂﬁ ﬂﬁ ﬂﬁ ﬂﬁ SH WYOLL/ESOdN/ZZd
NKININIEIE 8071 ENMdOdS/12od
— 01| Znmdrisonrozod
=T - T U DA A A Jo1-| md/osinie1od
2 501—| ONMd/0SOdN/810d
20| 2S0dN/aX10/210d
wﬁl M_il %1 #_1 %1 #_1 M_ml S| +SOdN/aX¥a/91L0d
£ 08 18 ¥ ¥ |8 |3 L LdNMM_SINM/0SLO/510d
, I I TS 7MOY mmw 0LdNYM OHLAV/0SLY/7LOd
= O I O B O Oy T 6dMIM_0%0d/0aXL/ELOd
& MO8 | 8dNYM_€SOdN/0aX¥/210d
g5 LdMIM 0¥ 10LMOML/L1Od
OMOY 5 £S0dN/AML/010d
440/NO[__Z6 | eg54n/amL/oLod

_+wm OVOIL/ONMA/20d

ROWS

0VOIL/0NMd/LOd

Zmos

ROW2

ROW1

||| d e
- A RN R — 78 1 9dndim_2x10d/1S0dN/90d
Mww 75— SAMIM_ZSOdN/LDYI/S0d
AN _ZITOL/LIE/POd
AT AT AT ST T 7100 §5-| €4 IS10L/18S/EDd
ONE L L T £109 691 CdMIM_CEOLL/L¥LA/Z0d
8 O A ﬂww g5 MM 2v011/1a0a/10d
— & o =z e
= E 2|8 |E |E |g o 05 Jg| OdMYM ZNMd/LSLO/00d
I 5% |3 z
— = O NMITON
0 lelgle) @ SERERLEE
wl
_ 71 1 D\ B\ DD D DD,
Wod O~ AN MW O~
[fasaNaaaaNaaNealyaalaa}
o000 an

PB8 SEG28

«

RS2320N <<

ROWO

ROW[0:5]

>
41
42
43|
44
45
46
47
48
49

-
|
coLs » -
COL[0:6]

cow g
cou g

™
cote

cotjos) <&
onoFF

Figure 3: Schematics for the HP 20b keyboard. The top is the keyboard matrix itself; the
bottom shows how the matrix is connected to the samyL chip. Note that the ON/CE key is

separate (not part of the matrix) and that “columns” of keys are actually horizontal.

	The Matrix Keyboard
	What To Do

