
Repurposing an HP Calculator
Lab 1: Hello World

CS & CE Art of Engineering Project

Stephen A. Edwards

Spring 2016

Abstract

In this project, you will write new �rmware for an HP 20b calculator. �is is an example
of embedded programming—coding so�ware for something that does not appear to be
a computer, yet is one at its core. �e plummeting cost of integrated circuits has made
such embedded systems ubiquitous. �e challenges of designing such systems run the
gamut from traditional electrical issues such as sensor noise and power consumption all
the way to high-level computer science problems such as e�cient algorithm design to
human factors engineering. You will experience all of these, and learn some standard
solutions, while performing this project.

1 Introduction
In 2008, over ten billion processor chips were manufactured and sold1—more than one for
every human on earth. �e heavily marketed high-end Intel and amd processors residing
within our desktop and notebook computers represent only about two percent of the total;
the rest are so-called embedded processors residing in familiar objects such as cell phones,
but many end up in less obvious places such as cars, televisions, Blu-ray players, and toys.
Once, I even found a microprocessor in my breakfast cereal.2 �ese things are everywhere;
somebody has to program them.

In this project, you will do some embedded programming by creating new �rmware for
the hp 20b calculator (Figure 1). Unlike most consumer products, this one was “opened” by
hp: they provide schematics and a so�ware development kit, so it is fairly straightforward to
turn this calculator into something it wasn’t originally designed to be. I turned one into a
remote control for third-world power distribution systems.3

1Michael Barr. Real men program in C. Embedded System Design, August 1st, 2009. http://www.embedded.
com/columns/barrcode/218600142.

2Xbox 360 “mini games” in Apple Jacks cereal: http://www.youtube.com/watch?v=jUNsQFG_5Pk
3With Prof. Vijay Modi of the mechanical engineering department http://modi.mech.columbia.edu/.

1

http://www.embedded.com/columns/barrcode/218600142
http://www.embedded.com/columns/barrcode/218600142
http://www.youtube.com/watch?v=jUNsQFG_5Pk
http://modi.mech.columbia.edu/

Figure 1: �e front and back of the hp 20b calculator. I cut a hole and added the jtag header
so we could develop so�ware on these.

2 �e hp 20b
�e hp 20b is essentially a keyboard and liquid crystal display (lcd) driven by an Atmel
at91sam7l128 processor. �is mouthful of a name, which I will abbreviate to sam7l, was
given to it because it is part of Atmel’s at91sam series of chips, which are all built around an
arm processor core (“at” is for Atmel; “sam” is “smart arm core;” 91 appears to be arbitrary).
�e 7l series of microcontrollers are designed for low power (hence the l), and the �nal 128
indicates it includes 128K of �ash program memory.

Figure 2 shows a block diagram of the sam7l chip. It looks complicated, but is essentially
a single standard processor surrounded by memory and a wide variety of peripherals, most of
which we will not use. You should be aware of the system controller, which, through so�ware,
controls the clock and power supply of each peripheral. �is makes it possible to save energy
by not powering on unneeded peripherals, but can also make a peripheral appear not to work
if you neglect to turn on its power.

For this project, the two most interesting peripherals are the lcd controller, which gener-
ates the complex ac waveforms necessary to drive the calculator’s multiplexed lcd display; to
so�ware, the lcd appears as a series of memory locations whose bits control individual lcd
segments.
3 What the heck is a jtag?
We will communicate with the processor through a jtag4 port, which is built into the sam7l.
�e 20b’s circuit board has a convenient place to solder a connector that bring out the jtag
signals, which I have already done for you.

Our development environment consists of Windows workstations with jtag adapters
connected to the usb ports. On the workstations, we are using a so�ware package called
“OpenOCD”5 that communicates to the sam7l cpu through usb and jtag.

Figure 3 show how to assemble the hardware. Plug the 20-pin connector onto the cal-
culator’s jtag connector, making sure to have the red wire (pin 1) on the le� when you are
looking at the back of the calculator. �e calculator’s connector has only 16 pins; make sure
the jtag connector extends past the pins on only the right side. �e unconnected four pins do
not do anything we care about.

4�e Joint Test Action Group originally developed this protocol for testing printed circuit boards. Today,
virtually every microcontroller has a jtag port for development and debugging.

5Open on-chip debugger: http://openocd.berlios.de/web/

http://openocd.berlios.de/web/

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: Block diagram of the at91sam7l chip. �is consists of an arm7tdmi processor core
surrounded by memory, a system (clock) controller, an lcd controller, and a variety of other
peripherals. Source: Atmel.

Figure 3: Connecting to the development ports on the back of the HP 20b calculator. Note
that the jtag connector extends beyond the header and we are not using the external power
jack.

�ash.bat Windows batch �le: compiles the program & �ashes the 20b
�ash-h.bat Variant for the ARM-USB-TINY-H dongles

Make�le Rules for compiling the program. Add source �le names here.

main.c �e main program: initialize the lcd and display a string.
lcd.c lcd-related functions and data.
lcd.h Externally visible interface to lcd.c
AT91SAM7L128.h Addresses of every peripheral in the sam7l chip
crt0.S arm assembly code that initializes the C runtime environment
at91sam7l128.lds Linker script: how and where to put the program in memory

�ash.cfg OpenOCD �le: rules for writing to �ash
hp-20b-calculator.cfg Tells OpenOCD the hp 20b contains a sam7l chip
at91sam7l128.cfg Tells OpenOCD about the sam7l chip

Figure 4: Files in lab1.zip

4 Compiling and Running “Hello”
Download the lab1.zip �le from the class webpage and unpack it, e.g., in the Downloads
folder. �is contains all the rules and scripts to compile the program and download it to the
calculator. See Figure 4 for a list of the �les and what they do.

To compile the program and �ash the calculator (load the program into the calculator),
start a Windows command shell (press the Windows key and ender “cmd” followed by Enter).

In the command shell, change to the unpacked lab1 directory and invoke the �ash script:

C:\Users\sedwards> cd Downloads\lab1

C:\Users\sedwards\Downloads\lab1> flash

Many magic incantations are at work here, but broadly, this compiles the crt0.S,main.c,
and lcd.c �les into corresponding binary .o �les, links them together to produce main.elf,
transforms that into the loadablemain.hex �le, then downloads that to the calculator.

We have two varieties of jtag dongles: arm-usb-tiny and arm-usb-tiny-h. �ey look
almost identical but appear as di�erent usb devices. If you are using the -H variant, run the
�ash-h script instead:

C:\Users\sedwards> cd Downloads\lab1

C:\Users\sedwards\Downloads\lab1> flash-h

If you see the following, the jtag adapter either isn’t properly connected to the workstation
or you are using the -h variant but have it con�gured for the other one. Check that the jtag
adapter is attached to the usb cable, that the cable is plugged into the computer, and that
you’re running the right version of the �ash script.

C:\Users\sedwards\Downloads\lab1> flash

...

Error: unable to open ftdi device: device not found

...

If you get the following error, the jtag adapter wasn’t able to establish communication
with the sam7l chip in the calculator.

C:\Users\sedwards\Downloads\lab1> flash

...

Error: JTAG scan chain interrogation failed: all ones

Error: Check JTAG interface, timings, target power, etc.

...

�is error occurs if the calculator isn’t properly connected to the jtag adapter with the
20-pin ribbon cable, if the calculator doesn’t have power (press the on/ce button and check
the battery), or if the sam7l chip is sleeping.

If all goes well, your calculator should look like Figure 5 and you should see a lengthy
series of commands and comments that looks roughly like

C:\Users\sedwards\Downloads\lab1> flash

...

Info : JTAG tap: at91sam7l128.cpu tap/device found:

0x3f0f0f0f (mfg: 0x787, part: 0xf0f0, ver: 0x3)

...

target halted in ARM state due to debug-request,

...

wrote 1120 bytes from file lab1.hex

...

shutdown command invoked

Here I’ve excerpted the relevant lines. �e “jtag tap” line indicates it was able to communi-
cate with and establish the identity of the processor. �e “target halted” means the OpenOCD
tool was able to instruct the processor to halt so it could download a �le to it, which the “wrote”
message indicates. Finally, we disconnected OpenOCD, indicated by “shutdown command
invoked.”

Figure 5: Running the “Hello” program

5 What To Do
1. Follow the instructions in the previous section to compile and download the sample

program onto the calculator.

2. Edit main.c and create a function that takes an integer argument and displays it in
decimal on the calculator. You have up to 12 digits to work with. Compile and download
your program to the calculator and show us that it works. Test it with a variety of
numbers, e.g., 0, −1, 1, 42, 12572, −123523.

3. When you’re happy with your display-a-number function, make sure your names are
in the main.c �le and submit it via CourseWorks. Only one submission per group is
necessary.

	Introduction
	The hp 20b
	What the heck is a jtag?
	Compiling and Running ``Hello''
	What To Do

