Final Report:
Cellular Automata on FPGA

James Olsen (jco2127)
Serena Shah-Simpson (ss4354)
Jeff Tao (jat2164)
Robert Viramontes (rsv2111)
Priscilla Wang (pyw2102)

1.

1.1.

1.2

1.3.

2.

21.

Introduction

Game of Life Rules
The Game of Life is a cellular automaton created by John Horton Conway in 1970. The
game is a zero-player game based on some simple mathematical rules. It consists of a
two-dimensional grid of cells that can be in one of two states: live or dead. Every cell
interacts with 8 neighbors and the state of each cell depends on its neighbors. The rules
of the game are:

1. Any live cell with less than two live neighbors dies.

2. Any live cell with two or three live neighbors lives.

3. Any live cell with more than three living neighbors dies.

4. Any dead cell with exactly three live neighbors becomes a live cell.
Based on the initial conditions, the cells form different patterns throughout the game.

Problem

Our goal was to implement Conway’s Game of life in native resolution. Since the Game
of Life is very computationally expensive, it is impossible to handle all computations in
software quickly enough to be able to display in 1280 x 1024 native resolution without
highly parallelized code. Our challenge was to design a hardware accelerator that could
handle the huge number of computations that needed to be computed natively.

Timing

One of the main design challenges of the project was ensuring that we could compute
the next state of each cell in the grid faster than the screen updates. The 1280 x 1024
screen uses a 108 MHz clock to update itself at 60 Hz. Thus, the game of life grid must
completely update within 1/60 of a second. Using the 108 MHz clock for the
calculations, this gives us 1,800,000 clock cycles to perform calculations on the entire
grid.

Architecture

Overview
Our game of life board is a binary 1280x1024 grid of cells that can either be alive or
dead. Given a current state of the board, we need to do two things:

First, using our custom accelerator, we must calculate the next state of the screen. We
pass cells from the current state to our accelerator, which calculates the next value of
that cell based on the rules of the game of life. The accelerator then saves the new
value in a second memory module. This is done iteratively for every cell in the grid. We
need two distinct memory modules: one to hold the current state which is being written to
the screen, and the other which holds the next state being calculated by the accelerator.
These memory modules are composed of on-board 10 Mb Block RAMs that have been
combined into a single block using the Quartus Megawizard. To combine perfectly into
one block per state, we used 20 bit words, for a total of 65536 words in each combined
memory block. Once the computation for the entire grid completes, the accelerator waits

to receive a ready signal signifying the current state has finished being written to the
screen.

Second, we need to display the entire grid on the monitor using the VGA controller.
Using code from lab 3 as a baseline, we fetch the appropriate cell address from the
current state of memory based on the current pixel being written to, and write the value
of this cell to the screen. If the cell is dead, the pixel is blue. If alive, the pixel is white.
Once the end of the screen is reached, a ready signal is sent to the accelerator and the
states of the two memory modules are switched.

A block diagram depicting a high level view of our system is shown in figure X.

Memory 1

A F Y

A 4

Y

Memory Accelerator VGA Controller Monitor
initialization
+—
Yy
Y Y
Memory 2
2.2. Parallel Computation

As previously explained, we need to accelerate computation so that the next state can
be calculated faster than the screen is updated. To achieve this speedup, our
accelerator calculates the next state values for entire 20 bit words in parallel. The cells
in each 20 bit word are horizontally adjacent on the grid. Due to the rules of Conway’s
Game of Life, to calculate the next state values of a 20 bit word, the accelerator must be
given that word and all the cells around it. Thus the 20 bit words directly above and
below the current word must be passed to the accelerator. These three words are
denoted the fop, middle, and bottom words. In addition, the rightmost cell of the three
words to the left and the leftmost cell of the three words to the right must also be passed
into the accelerator.

2.3.

2.3.1.

2.3.2.

Memory Pipeline

0
o| 41-bit Shift Register
Top Row
»
Block RAM N
M d b
3 o| 41-bit Shift Register 3 Conway
7 Middle Row Computational Unit
> A
L
Cal
Block RAM | 41-bit Shift Register
M2 " Bottom Row
T & T+1 RAMs

We keep track of two states of the grid, labeled as T and T+1. The memory module
that is labeled T contains the values of the current grid. The module labeled T+1 is
always the grid where values for the next state are being written to. Both grids are
the same shape and size. So that we are not needing to constantly write the next
state memory to current state memory when the next state has finished computing,
we instead toggle the T and T+1 labels between the two RAMs. This way, when
the next frame memory has been updated, we switch directions and begin to read
from this memory and write to the original current frame.

VGA controller itself does not directly access either of these RAMs. Instead,
Conway accelerator is constantly reading in data from the address requested from
the VGA controller from each grid and deciding which set of data should be sent to
the controller according to the current direction (e.g. if we’re currently reading from
RAM 1 and writing to RAM 2, the VGA controller is fed values from RAM 1, since it
is the one that currently has stable values).

Shift Registers
LSB of MSB
last of next
word word

l «<—accel word—» l «—20 bits waiting——»

<€— From memory

A T A

MSB Bit 20 LSB

Each row that’s currently being used for computation is stored in a shift register.
We keep three shift registers (top, middle, bottom). Each shift register is 41 bytes

2.3.3.

long. The word currently being examined, along with the cells directly above and
below it, are in bits 39 - 20. Since Game of Life calculations depend on all 8
neighbors surrounding a bit, we need the left and right columns and precede/follow
the current word. Thus, we have bit 40 and bit 19. Bit 40 is the least significant bit
of the word that preceded the current one. Bit 19 is the most significant bit of the
next word.

When we are finished performing computations on the current word, and when the
next word for the current row becomes available from memory, we set the shift
enable of the appropriate shift register high and shift in 20 bits (the next word). In
doing so, the previous word shifts out except for 1 bit, which remains as the left
column for the next word. The awaiting word, which had been in bits 19 - 0 of the
shift register, shifts up to bits 39 - 20. The new word shifts in as bits 19 - 0.

States

In order to determine which register(s) to shift, compute addresses for memory
access and write, and when to enable writes, we break our memory logic into four
states related to Conway’s Game of Life. This is not implemented as a formal state
machine, but the states allow for a clearer reasoning of what needs to happen.
Note that these computations are implemented as non-blocking assignments, so
the actual change in value occurs on the rising edge of the next clock cycle.

The states are as follows: TOP, which will act to shift the top row of data into the
appropriate shift register, MID which will shift the middle row in, BOT which will
shift the bottom row in, and EOR which syncs up the reads and writes at the end of
a row.

Memory access addresses are also determined in these states. Due to a two-cycle
fetch delay, TOP calculates the address for the bottom row, MID for the top row,
and BOT for the middle row.

The memory write address is determined in TOP as 2 words before the current
address being read. This is because the current address being read while in top is
for the middle row two words ahead, with the delay introduced by the two shifts
necessary to get data into the compute unit.

Write is enabled by TOP, at the same time that the write address is computed. It is
disabled by MID (and remains disabled in BOT). This allows the result to be locked
by memory and written just before the new data begins to be shifted into the
computational unit.

The above describes a kind of “steady state” for moving through the computation.
We now must deal with edge cases, namely: the vertical edges of the screen (at

2.4.

the beginning and end of the row) and the horizontal edges of the screen (at the
top and bottom of the screen).

Since we encounter the end of the row regularly, we implement a state to handle
this. As mentioned above, the memory writes are 2 cycles behind the memory
reads. In this state, we essentially stall to allow the final two words to be written
(they have already been read from memory and put into shift registers). We also
use this state to handle the behavior that the edge of the screen should be viewed
as dead pixels, so we select the zeros from the mux to be shifted in next. This
per-row stalling was necessary to prevent us from overwriting valid data with zeros,
but has the added benefit of syncing memory writes and reads for every row with
only a 3 cycle stall overhead.

The other edge case is when we are trying to calculate the top or bottom row of
the screen. We implement the same behavior of treating anything off-screen as a
dead cell. We use an out-of-bounds variable to keep track of when were are in
these states to ignore memory data and instead shift zeros in where appropriate.

These states are embedded in a larger if/else based on a direction variable, which
indicates which memory is being used as t and which as t+1, in order to address
the correct memory.

These states represent when the accelerator is “running”. When a full grid is
computed, a frame_complete signal is generated which then halts the system until
a ready_signal is received from the VGA controller indicating that can begin
computing the next screen.

VGA Driver

For the VGA driver, we modified the VGA driver developed in Lab 3 to support displaying
at the native resolution of the displays in the lab, 1280x1024 pixels with a 60Hz refresh
rate. This required a pixel clock of 108 MHz', which is generated using the system clock
of 50 MHz (selected by the CLKSEL pins and available through Qsys) and inputting this

into a PLL generated through the Megawizard in Qsys, which outputs a clock of
108MHz. The front porch, back porch, and sync timing details are updated for proper

syncing with the monitor. These values can be calculated or are readily available online’.

The VGA controller implements an internal 40-bit (2 word) buffer to contain the words to
draw to screen. The VGA controller needs to hold two words because there can be no
delay between drawing one word and the next: the pixel clock cannot be ‘paused’ to wait

for a memory request to be filled (or a shift register to shift, etc.). We ensure that we

1 https://eewiki.net/pages/viewpage.action?pageld=15925278

https://eewiki.net/pages/viewpage.action?pageId=15925278

3.

constantly have a stream of data available to the VGA controller by requesting the
replacement for a word as soon as it finishes drawing to screen. A typical workflow will
look something like:

1. Begin drawing word x from bottom 20 bits, word y is already requested.
2. Word y becomes available while drawing word x, place in top 20 bits.
3. Finish drawing word X, request word z, immediately begin drawing word y.

The VGA controller requests the data at a specific address from the accelerator module.
The module decides which memory to serve the request from, which should be the T
memory (same that it is reading from). The transaction takes place through an Avalon
Memory Mapped interface, with the VGA controller serving as the master and the
accelerator as the slave.

This VGA controller raises a ready signal when it has finished drawing the current frame,
letting the Conway Accelerator block know that the memory block it was reading from is
now ready to be written to for the next state. This is to prevent the accelerator from
out-pacing the screen refresh and drawing multiple states during one screen refresh.

Interface

In order to be able to generate different patterns, we have to reprogram the board with
different .sof files which contain different memory initialization files. We have written some
Python scripts which help to automate this process. The first is mif_from_bits.py, which
converts an input text document of 1s and Os (example included in code file) to a mif
(memory initialization file) that can be loaded as an initial state for the board. We then use
the swap_mem.py script to look for mif files and allow the user to decide which data to use
as mem_init.mif, which is the file that the compilation points to. Then, in Quartus we use
Processing>Update Memory Initialization File to refresh the data and then
Processing>Start>Start Assembler to generate a .sof file with the new memory. These can
be saved and renamed in the output_files directory. The ui.py script will search for .sof files
in this directory and then allow the user to select which it will program.

Results

By using this accelerator, we easily complete the computation for the next state before the
screen finishes updating. Using the three shift registers for the top, middle, and bottom
rows, each 20 bit word requires three clock cycles to be loaded and calculated by the
accelerator. Four cycles are also lost at the end of each row to satisfy our end of row logic.
Since there are 64 words per row, this means the accelerator computes a single row in 3*64
+ 4 =196 cycles. The entire screen can then be computed in 196*1024 = 200,704 cycles.
In other words, the max refresh rate that our accelerator could support would be about 555
Hz, which is nearly ten times faster than the required 60 Hz.

Conclusion

In conclusion, we count this as a very successful project. Although we did not have sufficient
time to create a slick user interface, we met our main goal of creating a hardware
accelerator that computes Conway’s Game of Life in native resolution, and we learned a lot
in the process!

Appendix A: File Manifest

SystemVerilog Component Files

conway_accel.sv: Accelerator and memory pipeline

conway_multiple.sv: Performs a word-wide computation for Conway’s Game of Life rules
conway_single.sv: Performs one cell computation for Conway’s Game of Life rules
mux20.sv: 20-wide, 3-input mux

SoCKit_top.v: top file for board, unchanged from Lab 3

t_memory.v: RAM module generated by Megawizard function

shift_reg_41.sv: 41 bit shift register used in data pipeline.

VGA_LED.sv: top file for VGA controller, interfaces with the accelerator
VGA_LED_Emulator.sv: implements VGA scanning, small memory buffer, and color logic

Testbench Files

conway_accel_tb.sv: Testbench for simulating accelerator.

vga_tb.sv: Testbench for top-level VGA component. Useful for examining Conway/VGA
interface.

vga_led_emu_tb.sv: Simulation of VGA logic component and screen drawing.

Qsys Components
conway_accel_hw.tcl: Hardware description for Qsys for the Conway accelerator module.
vga_led_hw.tcl: Hardware description for Qsys for the VGA module.

Quartus Files
lab3.qpf: Quartus project file.

lab3.gsys: the Qsys configuration File
SoCKit_Top.gsf: Quartus settings file

Python Scripts
ui.py: User-friendly interface for programming already-compiled files.

mif_from_bits.py: Generates MIF files from easier-to-write initialization files of 1’s and 0’s.
swap_mem.py: Switches out the contents of the MIF file being used to initialize the FPGA
without having to recompile the whole project.

Memory Initialization Files
gun.txt: A text file with a glider gun described in 1s and 0s, to be converted with mif_from_bits.
gun.mif: The resultant mif file, can be immediately loaded into the memory.

random_init.mif: Memory initialization file with randomly generated values.

Appenxix B: Code Listing
conway_accel.sv
// Management surrounding the Conway accelerator including buffers
module Conway_Accel(

input clk, reset,

// VGA controller will access memory exclusively on B ports, through this
module.

input ready_sig,

input [15:0] address b,

output [19:0] g_b,

output wait request,

output logic halp //testing...

)5

// for memories, data_b should be unused (never writing through the data
ports)

// clocks can *probably* be the same? implement buffering in the VGA
controller?

//

assign wait_request = 0;

logic [15:0] address_a_1, address_a_2;
logic [19:0] data_b, g _a_ 1, g _a_2;
logic [0:0] wren_a_1, wren_a_2, wren_b;
wire [19:0] q_b_1, gq_b_2;

assign data_b = 20'de;
assign wren_b = 1'd@; // never write over B port
wire [19:0] result;

tmemory ml(
.address_a(address_a 1),
.address_b(address_b),
.data_a(result),
.data_b(data_b),
.q_a(q_a_1),
.q_b(q_b_1),
.wren_a(wren_a_ 1),
.wren_b(wren_b),
.clock_a(clk), .clock b(clk)

)5

tmemory m2 (
.address_a(address_a_2),
.address_b(address_b),
.data_a(result),
.data_b(data_b),
.q_a(q_a_2),
.q_b(qg_b_2),
.wren_a(wren_a_2),
.wren_b(wren_b),
.clock_a(clk), .clock_b(clk)

)5

logic [19:0] zeros = 20'de;
wire [19:0] dout;

logic [1:0] sel;

assign halp = q_b_2[0];

// mux chooses zeros or which memory to shift in

mux20 memmux (.din_@(zeros), .din_1(q_a_1), .din_2(q_a_2), .sel(sel),
.dout(dout));

logic direction; //when @, ml is t, when 1, m2 is t

// reads from memory will go into here.

// necessary so that the shift registers are able to read from

// both ml and m2 (can't directly wire them up to different memories
// so the different memories will go here first.)

// logic [19:0] memory_buffer;

logic oob;

// wires connecting shift output to conway input
wire [21:0] top_out;

wire [21:0] middle out;

wire [21:0] bottom out;

// control logic for the shift registers
logic shift_enable_t, shift_enable_m, shift_enable_b, clear;

// instantiate shift register
shift_buffer top (.din(dout), .dout(top_out),
.shift_enable(shift_enable t), .clear(clear), .clk(clk));

shift _buffer middle (.din(dout), .dout(middle out),
.shift_enable(shift_enable m), .clear(clear), .clk(clk));

shift_buffer bottom (.din(dout), .dout(bottom out),
.shift_enable(shift_enable b), .clear(clear), .clk(clk));

// deal with requests from the VGA controller
assign q_b = (direction) ? q_b_2:q_b_1;

// instatiate conway module, wire together.

Conway Multiple cm (.top_row(top out),
.middle_row(middle_out),
.bottom_row(bottom out),
.result(result),
.clk(clk));

enum logic [1:0] {TOP, MID, BOT, EOR} state;
logic [0:0] frame_complete;

reg [5:0] word_count;

logic [2:0] eorstall;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin
address_a_ 1 <= 16'de;
address_a_2 <= 16'de;
shift _enable b <= 1'de;
shift_enable m <= 1'de;
shift _enable t <= 1'de;
clear <= 1;
word_count <= 6'de;
state <= TOP;
oob <= 1;
wren_a_1 <= 0;
wren_a_2 <= 0;
frame_complete <= 0;
direction <= 0;
eorstall <= 3'de;
end

else if (frame_complete && ready sig) begin
address_a_ 1 <= 16'de;
address_a_2 <= 16'de;
shift _enable b <= 1'de;
shift_enable_m <= 1'de;
shift _enable t <= 1'de;
clear <= 1;
word_count <= 6'de;
state <= TOP;
oob <= 1;
wren_a_1 <= 0;
wren_a_2 <= 0;
frame_complete <= 0;
if (direction == 0)
direction <= 1;
else
direction <= 9;
end

else if (frame_complete && ~ready_sig) begin end
else if (direction == ©) begin

clear <= 0;
case (state)

TOP : begin
if (address _a 1 < 16'd64 && oob == 1)
sel = 2'b00@; // dead cell buffer at top
else begin
sel = 2'b01;

end
// memory address computation
if (oob == 1 && address_a 1 > 16'd65471)
address_a_1 <= address_a_1; // Doesn't matter,

won't be checked. do not overflow the variable.

else

address_a 1 <= address_a_ 1 + 16'd64; //address

for BOT

if (word_count == 6'd0 && oob == 1)
wren_a_2 <= @; // if looking at first word, EOR zeros still
in accelerator, invalid output.

else if (word count < 6'd2)
wren_a_2 <= 0;

else wren_a_2 <= 1;
if (address_a 1 > 1)
address_a_2 <= address_a_1 - 16'd2; // will
write to the MID address in t+1 grid

shift_enable m
shift_enable_b
shift _enable_ t
state <= MID;
end

A
1l
.« we

A

1}
L O &

-

A
1l
e

MID : begin
sel = 2'b01;
shift_enable_ t <= 9;
shift_enable_m <= 1;

// Compute address for TOP
if (oob == 1)
address_a_1 = address_a_1 - 16'd64 + 16'dl; //
address for TOP; go back one row, move forward one word
else begin
address_a 1 <= address _a 1 - 16'd128 + 16'dl; //
address for TOP; go back two rows, move forward one word
end

state <= BOT;
if (wren_a_2 == 1)
wren_a_2 <= 0;
end

BOT : begin
shift_enable m <= 9;
shift_enable_b <= 1;

// compute address for mid
if ((oob == 1 && address a 1 < 16'd64))
address_a_1 <= address_a_1; // address for mid
else if ((oob == 1) && (address _a 1 < 16'd65))
address_a_1 <= 0;
else if (word count == 6'd63)

address_a_1 <= address_a_1; // address for top to

account for extra cycle by EOR

else

address_a_1 <= address_a_1+16'd64; // address for mid

EOR :

if (oob == 1 && address_a_1 < 16'd128) begin
sel = 2'b01;
end
else if (oob == 1 && address_a_1 > 16'd65471) begin
sel = 2'be0; // dead cell outline at bottom

end
else begin

sel = 2'b01;
end

word _count <= word count + 6'd1;

if(word_count == 6'd63) begin// at end of row
state <= EOR;

end

else
state <= TOP;

end

begin
if (eorstall == 3'd3) begin
if (address_a_ 1 > 16'd65407) // in the

second-to-last row

oob <= 1;
if (oob == 1 && address_a 1 < 16'd129)
oob <= 0;

else if (oob 1) begin
frame_complete <= 1;

end

address_a_1 <= address _a 1 + 16'd64;

word_count <= 6'de;

wren_a_2 <= 0;
state <= TOP;
eorstall <= 0;

end
else begin
eorstall <= eorstall+l;
state <= EOR;
if (eorstall == 3'd@) begin
shift_enable_b <= 0;
address_a 2 <= address_a 2 + 16'd1;
wren_a_2 <= 1;
end
else if (eorstall == 3'dl) begin
sel = 2'bo@; // when to deassert write
enable so this isn't the next thing written?
shift_enable b <= 1;
shift_enable_m <= 1;
shift _enable t <= 1;
wren_a_2 <= 0;

end

else if (eorstall == 3'd2) begin
address_a 2 <= address_a 2 + 16'd1;
wren_a_2 <= 1;

end

end
end
endcase

end

else if (direction == 1) begin
clear <= 0;
case (state)
TOP : begin
if (address_a 2 < 16'd64 && oob == 1)
sel = 2'bo0; // dead cell buffer at top
else begin
sel = 2'b10;
end
// memory address computation
if (oob == 1 && address_a 2 > 16'd65471)
address_a_2 <= address_a_2; // Doesn't matter,
won't be checked. do not overflow the variable.
else
address_a_2 <= address_a_2 + 16'd64; //address
for BOT

if (word_count == 6'd0 && oob == 1)
wren_a_1 <= @; // if looking at first word, EOR zeros still
in accelerator, invalid output.

else if (word_count < 6'd2)
wren_a_1 <= 0;

else wren_a 1 <= 1;
if (address_a 2 > 1)
address_a 1 <= address_a 2 - 16'd2; // will
write to the MID address in t+1 grid

shift_enable_m <= 0;
shift_enable b <= 9;
shift_enable_t <= 1;

state <= MID;
end

MID : begin
sel = 2'b10;
shift_enable_t <= 0;
shift_enable m <= 1;

// Compute address for TOP
if (oob == 1)
address_a 2 = address_a 2 - 16'd64 + 16'dl; //
address for TOP; go back one row, move forward one word
else begin
address_a_2 <= address_a 2 - 16'd128 + 16'dl; //
address for TOP; go back two rows, move forward one word
end

state <= BOT;
if (wren_a 1 == 1)
wren_a_1 <= 0;
end

BOT : begin
shift_enable_m <= 0;
shift_enable b <= 1;

// compute address for mid
if ((oob == 1 && address_a 2 < 16'd64))
address_a_2 <= address_a_2; // address for mid
else if ((oob == 1) & & (address_a 2 < 16'd65))
address_a_ 2 <= 0;
else if (word_count == 6'd63)
address_a_2 <= address_a_2; // address for top to
account for extra cycle by EOR
else
address_a_2 <= address_a_2+16'd64; // address for mid

if (oob == 1 && address_a_2 < 16'd128) begin
sel = 2'blo;
end
else if (oob == 1 && address_a 2 > 16'd65471) begin
sel = 2'be0; // dead cell outline at bottom

end
else begin

sel = 2'b10;
end

word _count <= word count + 6'dl;

if(word_count == 6'd63) begin// at end of row
state <= EOR;

end

else
state <= TOP;

end

EOR : begin
if (eorstall == 3'd3) begin
if (address_a 2 > 16'd65407) // in the
second-to-last row
oob <= 1;

if (oob == 1 && address_a 2 < 16'd129)
oob <= 0;
else if (oob == 1) begin
frame_complete <= 1;
end
address_a_ 2 <= address a 2 + 16'd64;

word_count <= 6'd0;

wren_a 1
state <=
eorstall
end
else begin
eorstall
state «=

<= 9;
TOP;
<= 9;

<= eorstall+l;
EOR;

if (eorstall == 3'd@) begin
shift _enable b <= 9;

address_a_1 <
wren_a_1 <=

end

else if (eorstall
sel = 2'b00;

address_a_1 + 16'd1;
1;

== 3'dl) begin
// when to deassert write

enable so this isn't the next thing written?

end

shift_enable_b <= 1;
shift _enable m <= 1;
shift_enable_t <= 1;
wren_a_1 <= 0;

else if (eorstall == 3'd2) begin

address_a_1
wren_a_1 <=

end
end
end
endcase

end
end
endmodule
conway_multiple.sv:
parameter word_len = 20;

module Conway Multiple(

A
1

address_a_1 + 16'd1;

=
e

input wire [21:0] top_row, middle row, bottom row, // 22 columns in

input logic clk,
output [19:0] result// 20 columns out
)s

// Generate and wire together 20
// Conway single modules.
generate
genvar 1i;

for (i=0; i<word_len; i = i+l) begin:accelerator
Conway_Cell c¢ (.top_row(top_row[i+2:i]),

.middle_row(middle_row[i+2:1]),

.bottom_row(bottom_row[i+2:1]),
.next_state(result[i]));
end
endgenerate
endmodule

conway_single.sv:

/*
* Computes a single cell of Conway's Game of Life.
* Takes 9 bits of input, and computes whether the
* the center bit is alive or dead based on the rules
* of Conway's Game of Life.
*

*/
module Conway_ Cell(
input wire [2:0] top_row, middle row, bottom_ row,

output reg next_state

)5

logic [1:0] sum_t, sum_m, sum_b;
logic [3:0] sum;

assign sum_t = top_row[2] + top_row[1l] + top_row[@];

assign sum_m
assign sum_b

middle row[2] + middle row[1] + middle row[@];
bottom_row[2] + bottom _row[1l] + bottom row[@];

assign sum = sum_t + sum_m + sum_b;

// Determine if a cell is dead(®) or alive(l)
// based on how many 1s are around it and
// its own state.

always @ (sum)
if (middle_row[1] == 1) begin
if (sum == 4'd3 || sum == 4'd4)

next state = 1;
else
next state = 0;

end
else begin
if (sum == 4'd3)
next_state = 1;
else
next_state = 0;
end

endmodule

mux20.sv:

/*
* Basic 20-bit wide mux
* with 3 inputs.
*/

module mux20 (

input wire [19:0] din_©,
input wire [19:0] din_1,
input wire [19:0] din_2,
input wire [1:0] sel,
output reg [19:0] dout);

always_comb begin

case (sel)

2'b00: dout = din_o;
2'b01l: dout = din_1;
2'b10: dout = din_2;
2'bll: dout = din_@;
endcase
end
endmodule

shift reqg_41.sv:

Shift register that holds 41 bits.

22 of those are availble on the output.
A shift moves in 20 bits of data.
Available with a synchronous clear.

¥ %X ¥ ¥ ¥ %

Built with guidance from:

*
https://courses.cs.washington.edu/courses/csed467/05wi/pdfs/lectures/07-Sequ
entialVerilog.pdf

*/

module shift_buffer(input logic clk, clear,

input logic shift_enable, // do shift when enabled, else hold
input [19:0] din, // 20 bits in

output [21:0] dout // 22 bits out

)s

logic [40:0] sregisters;
assign dout = sregisters[40:19];

always @(posedge clk) begin
if (clear)

sregisters = 41'do;

else if (shift_enable) begin
sregisters[19:0] <= din;

sregisters[40:20] <= sregisters[20:0];

end else
sregisters[40:19] <= dout;
end

endmodule

VGA LED.sv:
/* jco2127 jat2164 */

/*
* Avalon memory-mapped peripheral for the VGA LED Emulator
*

* Stephen A. Edwards
* Columbia University

*/
/*
*
* Adapted for use with Conway Accelerator project.
* Adds interface for Avalon Mapped-Memory for data
* transactions with the accelerator. Serves as the
* master (defined in Qsys).
*
*/
module VGA_LED(input logic clk, clkmem,
input logic reset,
input logic [31:0] writedata,
input logic write,
output logic readl,
input chipselect,

input wait_request,
input logic [2:0] address,
input logic [19:0] g_b,
input logic halp, // for testing...

output logic ready_sig,
output logic [15:0] address_b,
output logic [7:0] VGA R, VGA_G, VGA_B,

output logic VGA CLK, VGA HS, VGA VS, VGA_BLANK n,
output logic VGA_SYNC_n);

VGA_LED Emulator led emulator (.clk1e8(clk), .reset(reset),
.VGA_R(VGA R),
.VGA_G(VGA_G), .VGA_B(VGA_B),
.VGA_CLK(VGA_CLK), .VGA HS(VGA_HS), .VGA_VS(VGA_VS),
.VGA_BLANK_n(VGA_BLANK_n), .VGA_SYNC_n(VGA_SYNC_n),

.g_b(q_b),

.address(address_b), .ready_ sig(ready_sig));

logic halpflag;

assign halpflag = lhalp;

endmodule

VGA LED Emulator.sv:

/*
* Seven-segment LED emulator
*

* Stephen A. Edwards, Columbia University
*/

/*

*

Adapted for use with Conway Accelerator.

* Able to draw a 1280x1024 screen. Computes
* pixel color based on alive or dead cells

* received from the Conway module.

*/

module VGA_LED Emulator(
input logic clk1e8, reset,
input logic [19:0] q_b,

output logic ready_sig,
output logic [15:@]address,
output logic [7:0] VGA R, VGA G, VGA B,

output logic VGA_CLK, VGA HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);

/*
* 1280 x 1024 VGA timing for a 108 MHz clock: one pixel every other cycle
*
* HCOUNT 1599 © 1279 1599 o
*
* | Video | | Video
*
*
* |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE
*
* || VGA_HS |]
*/

// values determined with help from:
// https://eewiki.net/pages/viewpage.action?pageIld=15925278

// Parameters for hcount
parameter HACTIVE =
HFRONT_PORCH
HSYNC
HBACK_ PORCH
HTOTAL

// 1688

// Parameters for vcount
parameter VACTIVE =
VFRONT_PORCH
VSYNC
VBACK PORCH
VTOTAL =

// 1066

// Horizontal counter

11'd 1280,

11'd 48,

11'd 112,

11'd 248,

HACTIVE + HFRONT PORCH + HSYNC + HBACK_PORCH;

11'd 1024,

11'd 1,

11'd 3,

11'd 38,

VACTIVE + VFRONT_PORCH + VSYNC + VBACK_PORCH;

logic [10:0] hcount;
logic endOfLine;
// Vertical counter
logic [10:0] vcount;
logic endOfField;

always_ff @(posedge clk1l08 or posedge reset)

if (reset) hcount <= 0;
else if (endOfLine) hcount <= 9;
else hcount <= hcount + 11'd 1;

assign endOflLine = hcount == HTOTAL - 1;

always_ff @(posedge clk1l08 or posedge reset)
if (reset) vcount <= 0;
else if (endOfLine)
if (endOfField) vcount <= 9;
else vcount <= vcount + 11'd 1;

assign endOfField = vcount == VTOTAL - 1;

// Horizontal sync: from ©x520 to Ox5DF (@x57F)
// original 101 0010 0000 to 101 1101 1111
// new 101 0011 0000 to 101 1010 00O
// should go high again on 101 1010 0001

always_ff @(posedge clk108) begin
if (hcount >= 11'b10100110000 && hcount <= 11'b10110100000)

VGA_HS <= 1;
else
VGA_HS <= 0;

if (vcount >= 11'b10000000001 && vcount <= 11'b10000000100)
VGA_ VS <= 1;

else
VGA_VS <= 0;

// VGA_BLANK_n turns off screen when not drawing pixels
if (hcount < HACTIVE && vcount < VACTIVE)
VGA BLANK n <= 1;
else
VGA_BLANK n <= 0;

end

assign VGA_SYNC_n = @; // For adding sync to video signals; not used for
VGA

// Horizontal active: © to 1279 Vertical active: 0 to 479
// 101 0000 00RO 1280 01 1110 0000 480
// 110 0011 1111 1599 10 0000 1100 524

/* VGA_CLK is 108 MHz
*

* clkles8 I O Y e

*

*/

assign VGA_CLK = clk1e8; // 108 MHz clock: pixel latched on rising edge

logic [39:0] buffer;
enum logic [1:0] {START, LT, RT} state;
logic [5:0] pixel count;

always_ff @(posedge clk108 or posedge reset) begin

// reset or end of frame

if(reset) begin
address <= 16'd09;
pixel count <= 6'do;
state <= START;
buffer <= 40'do;
ready_sig <= 1'de;

end

// Just drew the last pixel

else if(address == 16'd65535 && pixel count == 6'd18) begin

address <= 16'd09;
pixel count <= pixel_count + 6'dl;
ready_sig <= 1;

end

// In any other pixel on screen

else if (hcount < 11'd1280 && vcount< 11'd1024) begin

case(state)
START : begin // Extra set up after a reset
buffer[19:0] <= q_b; // first word into
register
address <= address + 16'd1;

end

always_comb begin

state <= RT;
end
LT : begin // drawing left(39:20), writing right
if(pixel_count == 6'd18) begin
buffer[19:0] <= q_b;
address <= address + 16'd1;
end
ready_sig <= 0;
if (pixel count == 6'd19)
state <= RT;
end
RT: begin // drawing right(19:0), writing left
if (pixel_count == 6'd18) begin
buffer[39:20] <= q_b;
address <= address + 16'd1l;
end
if (pixel count == 6'd19)
state <= LT;
end

endcase
if (pixel count == 6'd19)

else

end

pixel_count <= 6'd0; // reset at end of word

pixel count <= pixel _count + 6'dl;

{VGA R, VGA G, VGA B} = {8'hoe, 8'h88, 8'h88}; // Not Black

case(state)

8'hff}; // White

8'hff}; // White

end

endcase

LT: begin
if (buffer[6'd39 - pixel count])
{VGA_R, VGA_ G, VGA B} = {8'hff, 8'hff,

end
RT: begin
if (buffer[6'd19 - pixel count])
{VGA_R, VGA G, VGA B} = {8'hff, 8'hff,
end

endmodule // VGA_LED Emulator

Testbench Files
conway_accel_tb.sv:
module conway_accel tb (

)5

logic clk, reset;

logic halp, ready_sig;
logic [15:0] address_b;
logic wait_request;
logic [19:0] q_b;

assign address_b
assign ready _sig

n
[I AY)
e e

Conway_Accel test(.*);

initial begin
clk = 9;
reset
#2
reset
end

1;

0;

always
#5 clk = ~clk;

endmodule

vga_tb.sv:
module vga_tb (

)5

logic clk, clkmem, reset, ready_sig, write, readl, chipselect,
wait_request;

logic [15:0] address_b;

logic [19:0] q_b;

logic [2:0] address;
logic [31:0] writedata;

logic [7:0] VGA R, VGA_G, VGA_B;
logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n;

VGA_LED test(.*);
assign q_b = 20'b10110011100011110000;

initial begin
clk = 0;
reset = 1;

#3

reset = 0;
end

always
#5 clk = ~clk;
endmodule

vga_led_emu_tb.sv:
module vga_emu_tb (

)5

logic clk1e8, reset, ready_sig;
logic [15:0] address;
logic [19:0] q_b;

logic [7:0] VGA R, VGA_G, VGA_B;
logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n;

VGA_LED Emulator test(.*);
assign gq_b = 20'b10110011100011110000;

initial begin

clk108 = 0;
reset = 1;
#3

reset = 0;

end

always
#5 clk1e8 = ~clk1e8;

endmodule

Python Scripts

Script that searches for and displays already-generated
.sof files. User then selects which file to load and
the quartus programmer is called.

Should be placed in project folder and Quartus told to compile
to ./output _files

#!/usr/bin/env python
import os

def main():
print "Welcome to our lame tui\n"

sof_files = []

for f in os.listdir("./output_files/"):
if f.endswith(".sof"):
sof_files.append(f)
print len(sof_files), ")", f[:-4]

choice = raw_input("# of sof file to program: ")

choice = int(choice) - 1

fname = sof files[choice]

callname = "quartus_pgm --mode=JTAG -o \'P;./output_files/%s\'"%fname

print callname
stream = os.popen(callname)

stream.close()

main()

mif _from_bits.py:
-*- coding: utf-8 -*-

From some game of life init file, generate mif

nnn

import sys

HEADER = """WIDTH=20;
DEPTH=65536;

ADDRESS_RADIX=UNS;
DATA_RADIX=UNS;
CONTENT BEGIN

nnn

FOOTER = llllllEND;llllll

def print_grid(grid):
for line in grid:
print ''.join(["'.

if ¢ == 0 else '%' for c in line])

def data_at(addr, grid):

For some bit grid

Assuming 64 word lines

row_num = addr / 64

start_index = (addr % 64) * 20

if row_num >= len(grid) or start_index >= len(grid[0]):
return 0

else:
bits = grid[row_num][start_index:start_index + 20]
if len(bits) < 20:

bits += [0] * (20 - len(bits))

value = int(''.join([str(c) for c in bits]), 2)
print addr, row_num, start_index, value
return value

def verify schematic(mif file):
with open(mif_file, "r") as f:
Throw away the header
for x in range(5):
f.readline()

grid = []
for i in range(1024):
grid.append([])
rightmost_column = ©
bottommost_row = ©
for line in f:
line = line.split(":")
addr = int(line[@].strip())
value = int((line[1].strip())[:-1])

row = addr / 64
bits = [int(d) for d in bin(value)[2:]]
Pad to 20 bits
if len(bits) != 20:
bits = ([@] * (20 - len(bits))) + bits
grid[row] += bits

if value != 0:
if row > bottommost_row:
bottommost _row = row
if (addr % 64) > rightmost_column:
rightmost_column = addr % 64

Trim grid to only the relevant region
grid = grid[:bottommost_row + 1]
right_index = rightmost_column * 20 + 20
grid = [line[:right_index] for line in grid]

print_grid(grid)

def main():
if len(sys.argv) != 2:
print "Usage: python mif_ from_bits.py input_file"

output_path = sys.argv[1l] + ".mif"

initial = []

with open(sys.argv[1l], "r") as bitmap:
for line in bitmap:
this line = []
for ¢ in line.strip():
this_line.append(int(c))

initial.append(this_line)
print_grid(initial)

print "Rows:", len(initial)
print "Cols:", len(initial[e@])
raw_input("Writing the above to "
+ sys.argv[1l] + ".mif\n"

+ "Press Enter to continue or Ctrl+C to abort")

with open(output_path, "w") as target:

target.write(HEADER)
for i in range(65536):

to write = data_at(i, initial)
target.write("%d : %d;\n" % (i, to_write))

target.write(FOOTER)

verify schematic(output_path)

swap_mem.py:

#!/usr/bin/env python

import os
import shutil

OUTPUT_FILE =
mif_files = []

"mem_init.mif"

print "MIF Files:"
for f in os.listdir("."):

choice
choice

if f.endswith(".mif") and not f
mif files.append(f)

print len(mif_files), ") ", f[:

raw_input("Enter # of file to
int(choice) - 1

chosen file = mif_files[choice]

OUTPUT_FILE:
-4]

program:")

os.remove(OUTPUT_FILE)
shutil.copyfile(chosen_file, OUTPUT_FILE)

