
Philip Schiffrin (pjs2186) 
Akira Baruah (akb2158) 
Chaiwen Chou (cc3636) 
Sean Liu (sl3497) 
 
 

NES­PACS 6502 
Design Document 

 
Introduction 
 

Our project is the emulation of the 6502 microprocessor on Altera’s Cyclone V 
FPGA. We were originally interested in pursuing this project because we wanted to 
emulate the Nintendo Entertainment System. However, upon further investigation, 
emulation of the entire system seemed like too broad of a project and we decided to 
pursue emulating the 2A03, which is the modified 6502 processor found inside the NES. 
The only major modification on the 2A03 is the removal of the binary coded decimal 
mode which was originally found on the 6502; otherwise, the processors have the same 
internal design. 

This is an exciting project to work on both because it allows us to design a 
complex, synchronous system in system verilog and because it gives us a fundamental 
insight into the nature of a processor. The 6502 was revolutionary at its time and is 
cited as one of the building blocks for the modern pipelined processor. 

 
Processor Architecture 
 

The architecture of our 6502 emulation follows the overall design of the original 
processor while modifying the implementation of internal buses and the clock. While 
the original processor used bidirectional buses to communicate both between internal 
components and with the off-board RAM, our use of the FPGA, which does not allow for 
bidirectional buses, requires a modified design. 

For external communication between the processor and RAM/peripherals, we will 
have two separate 8-bit registers, one for data-in and one for data-out. Internally, all 
registers read from and write back to each bus to which it is connected to in the original 
design (Figure 1.1). However, writing to the bus is controlled by a multiplexer, so that 
only one register can write to a bus on any given cycle. Each register will read from the 
buses to which it is connected on each cycle, but the use of that value is controlled by 
an enable signal which is output by the overall control logic. If the signal on a given bus 



is irrelevant for a particular register, the enable signal will be low and the value will be 
thrown away. Any register that needs the value will have their enable signal go high. 
 
 
 
 

 
 
 

Figure 1.1: Processor registers and control logic 
 



 
 

For timing, the original 6502 divides one clock into two phases, each of which 
controls certain components within the processor. Specifically, the data is read from the 
bus in one phase and an address is written in another phase. Our design combines the 
two phases into a single clock cycle, where each cycle performs decoding of the 
opcode, i.e the setting of each control signal for the current operation, and begin 
execution of the given instruction. What beginning execution refers to will depend on 
the action needed for the given instruction, but includes use of the ALU for operations 
that require any computation. For example, in the single byte instruction TAX, the value 
of the accumulator is loaded into the X index register. Figure 1.2 shows how the opcode 
arrives and is translated on T0 and the value in the accumulator is put on the SB bus on 
T1 via the en_X signal going high. Finally, in the next instruction’s T0, the value is read 
by the X index register from the bus. 
 

 
Figure 1.2: Timing for TAX instruction 

 
 
 
 
 
 
 
 



The following diagrams indicate the timing for communication between the processor 
and the block ram. 
 
 

 
Figure 1.3: Single byte instruction timing 

 
 

 
Figure 1.4: Two byte instruction timing 

 
 
 
 
 



 
Figure 1.5: Address registers and program counter 

 
Our processor will communicate with a 65kB block ram implemented as a 

module on the FPGA similar to the memory module implemented in lab 1. The module 
takes a 16 bit address as input as well as a write enable bit and, on each rising edge of 
the clock, puts one byte stored at the given address on an output which is sent to the 
data_in register in the processor.  
 
 
 
Software Interface 
 

We will implement a basic software interface to communicate between linux 
running on the ARM processor and our 6502 implementation running on the FPGA. On a 
high level, the software interface will allow the user to start and stop the processor, 
place 6502 assembly at a memory location that is addressable by the processor, and 
receive processor output (which can be printed to the screen by the user program). In 
this way the user can write a program in 6502 assembly, place the instructions in 
memory, run the instruction on the processor, and receive any output produced.  
 
 
 
 



Milestones 
 
Milestone 1:  

● Create simulations using Verilator for each submodule separately. Control logic 
partially complete. 

● Verify that each submodule produces proper values for hard coded inputs 
 
Milestone 2: 

● Finish simulations for each submodule. 
● Simulate timing between submodules... DEBUG! 
● Begin synthesizing modules on the FPGA 

 
Milestone 3: 

● Finish synthesizing modules on the FPGA 
● Write software interface to communicate between user and processor 

 
Final Presentation: 

● Processor successfully executes 6502 assembly 
● Software interface allows user to place assembly code at proper memory 

address 
● User can start and stop processor and view output 


