CSEE 4840 Project Design:
FPGA JPEG Compression
Accelerator

Xinyi Chang(xc2323), Yuxiang Chen(yc3096), Song Wang(sw2996), Nan Zhao(nz2250)
Spring 2016
Electrical Engineering, Columbia University

I. Introduction

When technology rapidly evolves, computing architectures must be very flexible and easy to upgrade.
FPGAs are considered as an very attractive solution for image processing implementation, not only
because of it integrates millions of gate and a large number of internal memory banks, but also it’s
fast-to-market, low cost, and high performance. In this project, we will build specialized hardware to
accelerate the JPEG image compression process taking the advantages of FPGA characteristic.

As shown in figure 1.1, there are four main steps in JPEG compression: divide an image into 8-pixel by
8-pixel blocks, DCT on image blocks, quantization, and inverse DCT. We will build a dedicated DCT,
quantization and inverse DCT processor on the FPGA board, in hopes of speeding up the compression
process when compared to running solely on the ARM CPU core.

To implement this accelerator, image pre-processing will be done in software side. It includes reading
image data from file, interpret image data and divide image into 8-pixels by 8-pixels blocks, and sending
pixels to the hardware. Then FPGA will handle the heavy image processing and send back the processed
data using Avalon bus. Figure 2.1 shows the high-level block diagram of the entire image compression. In
the end, we expect a compressed image date file stored in Linux end.

8x8 Image Block DCT values (Spacial Frequencies)
1|2|3|4|5|6|T7|8 1123 |4|5]|6|T7|8
9110|1112 |13 |14 15|16 9|10 |11 | 12|13 |14 |15]|16
L[-t 17|18 |19 |20 | 21|22 (23 | 24 = 17|18 |19 |20 | 21| 22 | 23 | 24
" V;"‘*' 25|26 |27 28| 29|30 |31 |32 Dlscfete 2526|2728 2930|3132
-§epi-1 o Cosine
3| 3435|136 | 37|38 39|40 Transformation 33(34)35/36|37 38|39)40
‘q 41|42 | 43 | 44 | 45 | 46 | 47 | 48 41|42 |43 | 44 | 45 | 46 | 47 | 48
49 | 50 [51 |52 | 53 |54 | 55 | 56 49 | 50 [51 | 52 | 53 | 54 | 55 | 56
57|58 |59 |60 |61 626364 57|58 |59 |60)61|62|63)64

Inverse
Discrete
Cosine
Transformation

Quantization

Figure 1.1 JPEG Image Compression Flow

Linux C Software FPGA

Figure 1.2 Block Diagram

II. Implementation

Software
Stage I. Picture Conversion

Due to the fact that ¢ program does not have libraries to handle pictures, we need to first use Matlab to
convert given pictures into matrices of ARGB value and then analysis the data with c.

The pseudo code below is our intended code algorithm for implementing such picture conversion
functions.

Input: Image file Output:Matrix of the Image file in ARGB values

Pseudo Code:(Matlab)

Load_image(*.jpg)

Fetch parameters...Height, Width, Resolution
Fetch pixel values...A,R,G,B

Store above values into a .txt file.
Close_image.

Stage Il. Matrix Processing

In our case, we are not processing the picture entirely. Our idea is to first convert each pixel into a
grayscale level data and then divide the whole picture into multiple 8*8 blocks. The blocks will end up be
sent to FPGA module.

Input:Matrix File Output: 8*8 Blocks and index info

Pseudo Code:(C)
Read_file(image.txt)

Fetch parameters(image.txt)
Calculate # of blocks {return ceiling(width/8) * ceiling(height/8)}
Estalbish_index_info{

Line 1 bl 1 line 1 bl n

Line m bl 1......... line m bl m

}

For(i=0;i<index#;i++){
g=fetch_pixel data(i)
g=update_grayscale(q)
send _to FPGA(q,i)

Stage lll. Data Collection

After FPGA finishes the transformation of data blocks, we need to collect them from communication bus
and combine them into a single .txt file. Pseudo code is for the algorithm we will use of data combination.

Input:8*8 block data, index info Output: Single .txt file

Pseudo Code:(C)
Index =1;
Open_file(filename.txt)

while(buffer){
Data = Receieve data(buffer)
Index = Data.index;
Matrix = Data.matrix;
If (index!=index_){ error;}
Else {
write to_file(filename.txt, Matrix)

Hardware
1. DCT
The implementation of DCT is on FPGA and is using systemVerilog. The N-point DCT is
defined as Figure 2.1. Our DCT optimization focuses on reducing the number of required
arithmetic operations, especially the number of multiplications. By using Loeffler Algorithm, the
number of multiplications in DCT can reach the theoretical low limit. Loeffler Algorithm

proposed to compute DCT outputs on four stages as shown in Figure 2.2, and each stage contains
some arithmetic operations.

For the further optimization, we use CSD representation for those coefficients in multiplications.

CSD is a signed representation which contains the fewest number of nonzero bits. With constant

number multiplications in DCT, the number of additions and subtractions will be minimized. For
any multiplication of 2 we can use shifter instead of multiplier.

y(k) = w(k) D x(n)cos (& 2n = 1)k - 1)), k =1,2,...,N, W)= \f

Figure 2.1 N-point DCT formula

stage 1 stage 2 stage 3 stage 4
>< <(tr Y(0)
T2y Y@
KC6 T(3) Y(2)
@ Y(6)

10 ><— 00 Oo=I+1D
+ c(3) \ /+ =Y(l) 11 - 01 Oi=k-L

> oo c1 s
k(:)// \\-a(6) b(6) - c(6) X K Y(3) 1» o
0—> KCn —

X(a){ }-a(?) b(7) /\ (7 / \K Y(5) n— L Lo

0, = I keos(nm/16) + Ik sin(nn/16)
X(7 =4 - = 7
X a(8) b(®) c®) ¥ 0,= -y ksin(nm/16) + I,k cos(nm/16)

Figure 2.2 Loeffler architecture of 8-point DCT algorithm

Real value | Decimal || Natural binary | Partial products CSD Partial products
cos ?—g 106 01101010 4 +0-0+0+0 4
sin?—g 71 01000111 4 0+00+00- 3
cos g 126 01111110 6 +00000-0 2
sin{g 25 00011001 3 00+0-00+ 3
cos ?—g 49 00110001 3 0+0-000+ 3
sin?—g 118 01110110 5 +000-0-0 3
ﬂ2) 181 10110101 5 +0-0-0+0+ 5)
Total Partial products 30 23

Figure 2.3 8-Point DCT Fixed Coefficient Representation

2. Memory Block Transpose
We plan to use register files to store the 8*8 blocks row by row after the first I-DCT operation,
and read the datas from register file column by column to achieve the transposing purpose before
datas are popped into 1-DCT module again.

3. Quantization

Quantization is the part of the process that actually allows for compression. The quantization
matrix can be altered to create an acceptable balance between image quality and compression
ratio. Once quantization has occurred, the data are encoded to a bit-stream in which form they are
stored or

transported.

The quantization operation is an integer division of the 2D DCT coefficients by pre-defined
values. These pre-defined values are stored in tables called quantization tables. In JPEG baseline
mode there are two quantization tables. One for luminance components and the other for
chrominance components. There are the recommended table as shown below:

= Luminance m Chrominance, subsampled 2:1

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 95 93 99 99 99
24 36 55 64 81 104 113 92 99 99 99 99 B 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 B9 99 099 99
7292 9 98 112 100 103 99 99 99 99 99 89 99 99 49

4. Inverse DCT
The definition of IDCT shows in Figure 2.4. Due to the limit of time, we implement the IDCT
only based on the IDCT formula,

. k=1

-

— -
2[5

N
x(n) = Z w(k)y(k)cos(M), n=12...N wik) = {

=1 2 , 2<k=N

Figure 2.4 N-point DCT formula

II1. Milestone

Milestone 1:

1. JPEG Compression in Matlab Implementation

2. DCT design in SystemVerilog

3. Image file generated from Matlab.
Milestone 2:

1. Image data dividing in C

2. Memory blocks with transpose function

3. Inverse DCT design in SystemVerilog

Milestone 3:
1. Quantization function in SystemVerilog
2. Avalon Bus setup.
3. Final assembling.

IV. Reference

[1] M. Jridi, A. Alfalou, "A low-power, high-speed DCT architecture for image compression: Principle
and implementation," 18th IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC), 2010, pp. 304-309.

[2] Y. H. Chen, T. Y. Chang and C. Y. Li, "Highthroughput DA-based DCT with high accuracy
error-compensated adder tree" , IEEE Trans. VeryLarge Scale Integr. (VLSI) Syst. , vol. 19, no. 4,
pp.709 -714 , 2011

[3] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy , "Low-power digital signal processing using
approximate adders" , IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. , vol. 32 ,no. 1, pp.124
-137,2013

[4] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power in a multiplier
architecture,” J. Low Power Electron., vol. 7, no. 4, pp.490-501, 2011.

[5]Y. V. Ivanov and C. J. Bleakley, “Real-time h.264 video encoding in software with fast mode decision
and dynamic complexity control,” ACM Trans. Multimedia Comput. Commun. Applicat., vol. 6, pp.
5:1-5:21, Feb. 2010.

