CSEE 4840 Spring 2016
DGEsc: Dungeon Escape
Game Design
Yi Wu (yw2707)

Yuxin Yang (yy2586)
Shengjia Zhang (sz2547)
Xiaoqing Yong (xy2246)

Foinwaring Ll e mer e scen

LLE TR b T



l. Design Overview:

This game is nothing like anything on the market. As Columbia EE students, we have taken classes on communication
circuits, and RF design. The legendary yet tragic story of one of our outstanding alumni Edwin Howard Armstrong, the
inventor of FM radio, inspired us to develop this game. You will further explore the details and plots of this Game Plot section.

This is an third person 2D RPG themed game. The map layout and character is designed to be in similar manner as the

well-known RPG game “Legend of Zelda™, or “Final Fantasy™.

LEVEL-1

Figure 1: Legend of Zelda Game Scene (on the left), Final Fantasy Game Scene (on the right).

We use sprites to tile up the map, as well as represent characters, objects and monsters. On the hardware perspective,
Verilog HDL are used to program, store and display sprites with VGA interface on FPGA board, as well as receive keyboard
control commands and processing sounds. On the software perspective, we have write our program in C language for map
and object generation, character movements, and other application of game rules.

1. Game Plot

Our game story happens on the 12th floor Mudd building, Columbia University, in embedded system lab. Eric, our main
character is doing his homework on this local online chatting room in this lab room. He finishes at 1 a.m. at night, and there is
nobody else in this room. At some point, he went out for the bathroom on the 13th floor - we allow the player to explore the
building (12 and 13th floor) a little bit. Once he sent “Hello” in his console to this room, and see all the other computers light
up, he was happy, and ready to go back home. However, after several seconds, someone from IP 195.4.1.31 replied “Hello
Eric!”. Confused and scared because nobody else is in the room to send this message, Eric typed in “?”. And suddenly, the
electricity goes off in this building. And his journey begins. Here is our main story line:
1. No service on his phone, we was locked out of the lab after he left. Stairwell to the 11th floor locked.
2. He explored in dark, and found that there is some weird liquid on Armstrong’s bust on 13th floor. Found a key and
some scripts (circuits schematic hand drawn by Armstrong) inside the bust.
3. Collect components on 12th floor and 13th floor: 1. Audio Stage Amplifier - from Professor Yannis’s mailbox. 2.
Radio Frequency Generator from circuit lab on 12th floor. 3. Radio Frequency power amplifier - from Professor

' The Legend of Zelda (Japanese: £ )L % M{xER Hepburn: Zeruda no Densetsu?) is a high-fantasy action-adventure video
game series created by Japanese game designers Shigeru Miyamoto and Takashi Tezuka. It is primarily developed and
published by Nintendo, although some portable installments have been outsourced to Capcom, Vanpool, and Grezzo. The
series' gameplay incorporates elements of action, adventure, and puzzle-solving games. The Legend of Zelda is one of
Nintendo's most prominent franchises.

2 Final Fantasy (7 7 4 )L 2 7 >4 — Fainaru Fantaji?) is a science fiction and fantasy media franchise created by
Hironobu Sakaguchi, and developed and owned by Square Enix (formerly Square). The franchise centers on a series of
fantasy and science fantasy role-playing video games (RPGs). The eponymous first game in the series, published in 1987,
was conceived by Sakaguchi as his last-ditch effort in the game industry; the title was a success and spawned sequels. The
video game series has since branched into other genres such as tactical role-playing, action role-playing, massively
multiplayer online role-playing, racing, third-person shooter, fighting, rhythm and anime.



Vallancourt’s personal collection. Final component missing - mysterious modulator. 4. Speaker from a subwoofer on
12th floor.

4. Insert the key into pupin’s bust, we find the mysterious modulator. (But start to hear foot steps). We are missing a
power supply.

5. Go to maker’s space to collect battery, and build this circuit. Meanwhile, the timer starts, if you don’t build things
quick enough, someone in black is going to approach you and kill you.

6. If built in time, someone starts talking through the receiver, giving you instructions to go to the basement of Mudd
building through Vallancout’s office secret tunnel.

7. End of Episode One.

. Hardware Components
1. Keyboard Controllers

Keyboard is used to control the total game process; all the functions of the game should be realized with the use of keyboard.
These functions include systematic functions such as pause, resume, start and exit; as well as gaming functions such as
going forward, going back, making turns and fire. The functions of the keyboard are designed both in Verilog HDL and C
language. In this design, we use following keys on keyboard and their functions are also listed below:

Key Function
T, ,«—, — Up, Down, Left, Right movements of character, or selection
Esc Menu
Return Confirm
Space Examine
Microphone Blow out dust/other interactive event
2. VGA Block

SOCkitboard includes a 15-pin D-SUB connector for VGA output. The VGA synchro nization signals are provided directly
from the Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits

are use d) is used to produce the analog data signals (red, green, and blue). The following figure gives the associated
schematic.

ua
B # VGA DAC
m}i VGA_CLK ol ADVT123
et VGA SYNCN
VGA BLANK N
VGA_ VS
VGA_HS

VGA is hardware designed in Verilog HDL to correctly connect the FPGA board with functions loaded to the monitor, as well
as to display everything in the gaming window. VGA display would interact with memory which consists of RAM and decoder
to generate display at the current moment with respect to the display stored as the previous game window. In VGA display,



there are kinds of elements to be shown:

Main character Eric:

Figure 2: Main Character Eric sprite.?

Wall (different choices of wall tiles):

Ny

Figure 3: Wall sprite.*

Floor (wood floor example):

Figure 4: Floor sprite.?

3 http://www.deviantart.com/tag/charaset
“https://grandmadebslittlebits.wordpress.com/2015/06/13/rpg-maker-vx-ace-modern-interior-computer-server-wall-and-cabine
t-tiles/

Shttp://www.deviantart.com/morelikethis/122524193



Objects example:

Figure 5: Scroll sprite.’

Dialogue Box Mask (Transparent):

&} Plight of the Battle Mage : =
i |

Ayron -

P

}A)\ So what's going on:here?. The didn’t
4\ tell me much... only that y

Figure 6: Dialogue Box Mask.”

3. Audio Interface in FPGA

The Sockit Board we are using here Cyclone V provides high quality 24 bit audio via SSM2603 Audio CODEC chip.
SSM2603 uses 12C protocol for configuration. .1t supports three ports: Mic-in, Line-in(audio in), Line-out(audio out) and with
various sampling rate from 8Khz to 96kHz. In this project, we are using Mic-In for player to interact with the game ambience
to solve the puzzle. (For example, if there is a dusty document, the player can blow out dust via the microphone. This is little
bit like the Japan version of Legend of Zelda in which you can shout at the microphone to kill the Pols Voice.)

Shttp://muhagames.com/sesjal/items/
"http://forums.rpgmakerweb.com/index.php?/topic/3829-importing-to-ace-message-system/



ue

AUD XCK

» MCLK/XTI
PRETXTEN o e (g
. = -+ PBDAT
iﬁbl I:I -E D K E b AUD_DACLRCK »| PBLRC _

® ke AUD_ADCDAT RECDAT Line In 5

C e@V <« AUD_ADCLRCK | oo o W

i c‘bs‘nl ol AUDMUTE | = e Ou

AUD_SCLK | 0\ e, @ | J7

AUD_SDAT | -

Figure. Connection between Cyclone V Sockit board and SSM2603 Audio CODEC?®

Signal Name FPGA Pin No. Description /O Standard
AUD_ADCLRCK PIN_AG30 Audio CODEC ADC LR Clock 3.3v
AUD_ADCDAT PIN_AC27 Audio CODEC ADC Data 3.3V
AUD_DACLRCK PIN_AH4 _ Audio CODEC DAC LR Clock | 3.3v
AUD_DACDAT PIN_AG3 _ Audio CODEC DAC Data 3.3v
AUD_XCK PIN_AC9 Audio CODEC Chip Clock 3.3V
AUD_BCLK PIN_AE7 Audio CODEC Bit-Stream Clock 3.3V
AUD_|2C_SCLK PIN_AH30 12C Clock 3.3v
AUD_|2C_SDAT PIN_AF30 12C Data 3.3V
AUD_MUTE PIN_AD26 DAC Output Mute, Active Low 3.3V

Figure. Pin Assignment for SSM2603 Audio CODEC?®

In our project, we will collect the information from game event and generator audio data through the subtractive synthesizer.
The real-time audio will be put in the music buffer via HPS so that the SSM2603 codec can retrieve the audio file and play it
through the line out.

V. Software Components
1. Sprite Control
The sprite stored in SRAM with mif format can be displayed on screen on given X and Y coordinates. This is done by
the sprite controller. It takes X and Y coordinates from game logic controller and access the sprite data on the SRAM with
given address, then the sprite controller can generate RGB values for the VGA controller.

8http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=55132755c0462d5ad3f226a
b804d0cf0
9

http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=55132755c0462d5ad3f226a
b804d0cf0



Protagonist
) RGE RGE
: g
Wall
Sprite WEA
0t Conroller
hcount,
yoount
Objects address
] R
F Y
X ¥
Game Logic
Controller

Figure. Sprite Controller Block Diagram

2. Audio

Although the DDR3 1Gb SRAM in SocKit board should be capable of around 2 hours of cd quality audio data, in
order to save the memory for all the image files, we need limited the memory allocation for audio data. The solution of not
reduce the audio quality and limited the memory size of audio data is to generate the audio real-time during the game play.
Generating real real-time audio can not only reduce the memory size of audio data, but also dramatize the gameplay
experience and create a cinematic feeling.

Currently we have two approach for this solution. First is implement a subtractive synthesizer for FPGA. Analog
synthesizers in 1960s and 1970s commonly use a technique called “subtractive synthesis”. It is a method to synthesize audio
signal by attenuating the original audio signal. The attenuation can be done with applying the original signal to filter, envelope
generator and low frequency generator. Those analog synthesizers back to 1960s and 1970s fed the simple waveforms like
sine waves, sawtooth waves, square waves and pulse waves to filters and envelope generator to synthesize different kinds
of sound. With different event the player triggered, different setting will be input to the subtractive synthesizer and generate
different sound. This will make game experience more interesting instead of one boring, unrealistic sample.



OUTPUT SOUND

(Nurve it

MODIFIERS

L --- *.
SOUND SOURCE

= Low

Frequency
Oscillator

mﬁh‘ﬂrj "h"l. s

Square  Sawtooth ¥ oltage
I_I_l NN - Controlled
Pulse Moise R Amplifiar
: . :
: || | P'Ufﬂ Filer i
x - Envelope
= - : ] ADsR
.
- D —— -

/.\ /.\ l-“--rII'Il Control VI‘}:U.R!!
sead MsAulatian Pitch * Soundwave

Wheel Wheel Keyboard

CONTROLLERS

Figure. Signal Flow of a Typical Subtractive Synthesizer®

Although subtractive synthesizer with ADSR envelope generator provides a solution of good quality instrument simulation, it
might occupied a lot CPU computation resources. Subtractive Synthesizer might only suitable for sound effects. Therefore, a
CPU resources saving approach should be considered for game background music playback.

PULSE HAVE

PULSE HWAVE

TRIANGLE

NOISE

Figure. NES (famicon) Audio Generator!

We will use the idea from the NES, using the signal generator from the subtractive synthesizer to compose/play background
music. The original NES has five channel. Two pulse wave generator, one triangle wave generator, one noise generator and
one channel for PCM sample. In our project, we will use two pulse wave generator, one triangle wave generator and one
noise generator to playback the background music.

V. Milestones

Thu Mar 24 Design Ready.

19 hitp://www.planetoftunes.com/synthesis/subtractive-synthesis.htm.
" https://www.youtube.com/watch?v=q_3d1x2VPxk



Tue Mar 29

Milestone prepare:
Convert JPEG tiles into mif file. Get sprites shown on our screen.

Thu Mar 31 Milestone 1:
Background map generation. Using software to control the positions of the tiles, and hardware to display
the tiles.
Generate a dialogue mask over the screen to pass message to players.

Tue Apr 5 Configure the movement of the character, controlled by our keyboard. Configure the interaction between
the character and objects.

Thu Apr 7 Test character movements, interaction, and dialogue inside the map, and debug.

Tue Apr 12 Milestone 2:
Insert story into our software. Have the software framework ready for the first episode.

Thu Apr 14 Debug.

Tue Apr 19 Integrating sound effect, and possibly sound control into the game.

Thu Apr 21 Debug.

Tue Apr 26 Milestone 3:

We should have a working bugless prototype of the first episode of our game.

Tue Apr 28

Presentation, demonstration, and final report ready.




