Friday, August 19th 2016

COMS4115: Final Project Report
Kyra F. Lee, kfl2120@columbia.edu

Introduction

Language Tutorial

Language Reference Manual
Lexical Conventions
Syntax
Program Validity

Project Plan
Programming style and process
Development environment
Project Log

Architectural Design Diagram

Test Plan
incdec.knit

vars.knit

dishcloth.knit
Lessons Learned
Appendix: Code Listing

Introduction

In order to compress the instructions for the thousands of individual stitches that comprise a
knitted project, traditional knitting patterns are written in a terse, almost algebraic style. Unfortunately, any
arithmetic errors in this notation can make a pattern impossible to follow. This is a problem crying out for a
computer-based solution. This project constructs a compiler whose input is very similar to traditional
knitting patterns and whose output verifies that a pattern is free of errors and can be executed by a knitter

without errors.

A knitted object consists of a series of rows. Each row of knitting consists of sequences of two
basic stitches, knit and purl. Because the structure of these stitches, a stitch worked as a knit on the
right-side of the fabric produces a purl stitch on the reverse, wrong-side of the fabric, and vice versa. Each
row is worked on the foundation of the one preceding it, in alternating directions (considered facing the
right-side of the finished fabric, the first, right-side row is worked from right to left, then the second,
wrong-side row is worked from left to right, etc.). Each row must consume exactly as many stitches as
were produced in the row before it. Additionally, it is possible to increase (producing two new stitches
while only consuming one from the preceding row) and to decrease (consuming two stitches from the
preceding row while only producing one). Each stitch can be represented by a node with outgoing pointers
to the other stitches that surround it, and a complete knitted project is thus a grid of such interconnected
nodes. If a complete data structure has been built, it can be proven to be valid, with each row consuming
and producing appropriate numbers of stitches.

mailto:kfl2120@columbia.edu

Language Tutorial

A traditional knitting pattern (such as the one given for a dishcloth at
http://homespunliving.blogspot.com/2007/11/waffle-knit-dishcloth-pattern.html) can be converted into the
stricter syntax required by this language, following the Language Reference Manual. For example, the
instruction to “Cast on 38 stitches.” turns into CO 38. The completely converted example is given in the

test plan under dishcloth.knit.

Once the .knit program is written, it can be compiled by piping it to the knitting compiler, as cat
dishcloth.knit | ./knit > dishcloth.c to produce a C language program. The C program
can be compiled, for example with gcc dishcloth.c -o dishcloth. The executable program can
then be run with one of three options.

1. --row_count, which will print a statement of how many rows the pattern contains
--stitch_count [row number], which will print a statement of how many stitches the specified row
of the pattern contains. If the given row number is greater than the number of rows in the pattern,
the number of stitches in the last pattern row will be given instead.

3. --print_chart, which will print a schematic representation of the entire knitted pattern, where each
knit stich is represented with a . each purl stitch witha - each increase witha v and each
decrease witha /

Examples of all three of these execution modes are given in the test plan examples.

Language Reference Manual

A valid program consists of a series of row definitions, a series of stitch pattern definitions, and
a knitting pattern. In this LRM, we define the lexical conventions of the language, the syntax of each of
these three components, and the constraints governing what constitutes a valid program. In this manual,
underline denotes definitions, italics represent non-terminal variables, and monospace font represents
strings to be included literally in .knit programs.

Lexical Conventions

e Comments begin on their own line with the keyword Note: and continue until the end
of that line, consuming the next newline character.

e Newlines (‘\n") are used to mark the ends of some syntactic elements, as explained
below. All other whitespace (‘\t’', ‘\r’, * ")isignored, except as necessary to
separate tokens.

e Identifiers consist of an upper- or lower-case letter that is not a lower-case ‘k’ or ‘p’,
followed by zero or more letters, digits, and underscores (‘ _"). The regular expression
matcher for these identifiersisthus [‘a’-‘j’ ‘1'-‘o’ ‘q’'-'z’
‘A'-'Z'1['a'-"z" 'A'-'Z" '@'-'9" ‘_']* Lowercase ‘k’ and ‘p’
cannot begin an identifier, to avoid ambiguity with the knit and purl stitch keywords 'k’
and ‘p’.We denote an identifier in the rules that follow by Id.

e Literals consist of a series of ASCII digits representing a base-10 integer. Denoted by Lit.

http://homespunliving.blogspot.com/2007/11/waffle-knit-dishcloth-pattern.html

The symbols “(*, ‘)’, “:', ‘*’, and ‘,’ are used as part of program control.
Use of any other symbol is an error.

Reserved keywords which may not be used for any other purpose are "BO", "CO",
"dec", "inc", ‘k’', ‘p’, "repeat", "Row", "Stitch Pattern",
"stitches remain", "times", "until", and "Work". Additionally, no
reserved keyword of the C programming language may be used as an identifier.

Syntax

Variables are either integer literals or string identifiers (constrained as defined above).
var = Lit | Id

A stitch instruction is a single increase or decrease, or a variable representing a number of
knit or purl stitches. Stitch=1inc | dec | kvar | p var. Whitespace between the k
or p and the variable is optional.

A stitch list is a comma-separated series of some number of such stitch instructions.
stitch_list = Stitch (, Stitch)*

Formal argument lists are series of identifiers, also comma-separated.

formal_args = Id (, Id)*

A repeat condition is either an instruction to repeat a certain number of times, or until a
certain number of stitches remain in the previous row.

repeat_condition = var times |until var stitches remain

A row definition is an identifier, optional formal arguments set off by parentheses, a colon,
an optional beginning stitch list, a non-empty repeat stitch list set off by *s, a repeat
condition, and an optional ending stitch list, and a newline.

row =Id Row(formal_args?) : stitch_list? * stitch_list x repeat repeat_condition stitch_list? \n

An actual arguments list is a series of comma-separated variables.

actual_args = var (, var)*

A call references a previously defined row or stitch pattern name, followed by a list of
actual arguments corresponding to the pattern definition’s formal arguments.

call = Id (actual_args?)

A stitch pattern is an identifier, a colon, a newline, and a series of newline-separated calls.
stitch_pattern = Id Stitch Pattern:\n (call \n)*

A pattern is a cast-on statement, a series of newline-separated calls paired with repeat
conditions, and a bind-off statement.

pattern = CO var \n Work call repeat_condition \n)* BO

A complete program is a series of rows, a series of stitch patterns, and a single pattern.
Program = row* \n stitch_pattern*® \n pattern

Program Validity

Identifiers used as variables may only be declared in formal argument lists. It is an error to

reference a variable that has not been declared in this way. It is also an error to use the same
identifier to refer to more than one row or stitch pattern, or to call an identifier that has not been
defined as a row or stitch pattern. It is an error to call a row or stitch pattern with a different
number of actual arguments than the definition has formal arguments.

The program executes by creating the stitches specified by each row called by the pattern
or stitch pattern in order. To be valid, each row worked in the knitting pattern must consume
exactly as many stitches as were produced by the row before it. Each knit or purl consumes and
produces one stitch. An increase consumes one stitch and produces two stitches. A decrease
consumes two stitches and produces one stitch. If while the program executes a row ever attempts
to consume more stitches than the previous row produced, the program will immediately terminate
with a failure message. If at the end of any row there are still unconsumed stitches from the
previous row remaining, the program will immediately terminate with a failure message.

Project Plan

Programming style and process

Since this project was developed individually, formal communication, strict code check-in
requirements, and separately defined roles were not necessary. A stricter project timeline would
have been a helpful tool, but one was not strictly followed (see Lessons Learned). OCaml source
files are restricted to an 80-character line length.

Development environment

The OCaml compiler, version 4.01.0

gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntul~14.04.3)
vim, gedit, make, local git repository

Project Log

Date | Log

6/8 Initial language proposal submitted

6/16 | Proposal comments received

6/21 | Proposal comments response

6/29 | First draft of translator frontend (Scanner, Parser, AST)

6/29 Initial LRM submitted

7/12 LRM comments received

8/7 Translator frontend rewrite completed (simplified AST definition from 62 to 32 LOC)

8/8 AST pretty-print output working end-to-end (program can be parsed, output, and
reparsed into the same AST).

8/12 | Output program structure finalized, including stitch struct.

8/15 | Compilation flow working end-to-end

8/18 | Additional testing and output tweaks

8/19 | Final report submitted

Architectural Design Diagram

Scanner itl::;: ” Parser generated Porety-print
input.knit | generated by + by ocamlyacc RNk
source file e llli i from parser.mli et

scanner.mll P -miy to input

source file
AST structure
=, defined in ast.mi
translate.ml
contains compile.ml
snippets of C converts the AST
code used in into a C program
the translation

N

output.c

C program
ready to be
compiled with
gee and run with
output options

Test Plan

The test plan for this compiler consists of several small programs, compiled and executed, with
their translations and execution output examined. Below, the details of some representative test programs
are given in full. Other test programs in the full testing suite include programs to test small, plain squares
of just knit stitches, purl stitches, knits and purls in combination, programs to test increases and decreases
on their own, and programs to test error conditions for too many and not enough stitches consumed. All
test programs can be run and analyzed with a quick series of shell commands.

incdec.knit

This program tests the increase and decrease stitch functionality, as well as providing interesting
examples for the --row_count and --stitch_count executable options. These queries make it possible to use
knit program outputs with increases and decreases to implicitly calculate values based on the requested
start and end stitch count. For example, the increase portion of this program shows that by increasing 2
stitches on every row, it will take 5 rows to increase from 10 to 20 stitches, or (20 - 10) /2 = 5.

e Input file

increase Row():
decrease Row():

k1,
k1,

CO 10

Work increase()
Work decrease()
BO

until 20 stitches remain
until 10 stitches remain

inc *k1#* repeat until 2 stitches remain inc,
dec *k1* repeat until 3 stitches remain dec,

e Translated output C file

#include <stdio.h>
#include <stdlib.h>

enum stitch_type { KNIT, PURL, INCREASE,

struct stitch {
int right_side;
int count;
enum stitch_type type;
struct stitch* next;
struct stitch* preyv;
struct stitch* next_row;
struct stitch* prev_row;

s

struct stitch* curr;
struct stitch#* prev_row;

DECREASE, CO };

int rs) {

PURL && !'rs)) { symbol
KNIT && !rs)) { symbol

v
AR’

int i, repeat;
void print_symbol(enum stitch_type type,
char symbol = 'x';
if ((type == KNIT && rs) || (type
if ((type == PURL && rs) || (type
if (type == INCREASE) { symbol =
if (type == DECREASE) { symbol =
if (type == CO) { symbol = '_'; }

printf("%c ", symbol);

}void make_stitch(enum stitch_type type) {

struct stitch* new_stitch =

(struct stitch*) malloc(sizeof(struct stitch));

new_stitch->type = type;

new_stitch->next_row = NULL;
new_stitch->next = NULL;
new_stitch->prev = curr;

int count = 1;
if (curr !'= NULL) {
curr->next = new_stitch;
count = curr->count + 1;
}
new_stitch->count = count;
new_stitch->prev_row = prev_row;
if (prev_row != NULL) {
prev_row->next_row = new_stitch;
prev_row = prev_row->prev;
} else if (type != CO) { printf("ERROR! No stitch available to
work type %d\n", type); exit(0);
} curr = new_stitch;

}

void decrease() {
for (i=0;i<1;i++){make_stitch(KNIT);}
make_stitch(DECREASE) ;prev_row->next_row=curr;prev_row=prev_row->prejy
do {for (i=0;i<1;i++){make_stitch(KNIT);}}while(prev_row!=NULL &&
prev_row->count!=3);
make_stitch(DECREASE) ;prev_row->next_row=curr;prev_row=prev_row->prejy
for (i=0;i<1;i++){make_stitch(KNIT);}
if (prev_row != NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "decrease");

exit(0);
}
}
void increase() {
for (i=0;i<1;i++){make_stitch(KNIT);}
make_stitch(INCREASE) ;prev_row=prev_row->next;make_stitch(INCREASE);
do {for (i=0;i<1;i++){make_stitch(KNIT);}}while(prev_row!=NULL &&
prev_row->count!=2);
make_stitch(INCREASE) ;prev_row=prev_row->next;make_stitch(INCREASE);
for (i=0;i<1;i++){make_stitch(KNIT);}
if (prev_row != NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "increase");

exit(0);
}
}
int main(int argc, char* argv[]) {
int repeat;
struct stitch* first_stitch;
make_stitch(CO);
int 1i;

for (i = 1; i < 10; i++) {
make_stitch(CO);
}
first_stitch=curr;
do {
prev_row=curr;curr=NULL;
increase();prev_row=curr;}while(prev_row!=NULL &&
prev_row->count!=20);
do {
prev_row=curr;curr=NULL;
decrease() ;prev_row=curr;}while(prev_row!=NULL &&
prev_row->count!=10);if(first_stitch->next_row!=NULL){first_stitch=f]
st_stitch->next_row;}
if (argec > 1) {
if (!strcmp(argv[1], "--row_count")) {curr=first_stitch;i=0;
while(curr!=NULL) {i++; curr=curr->next_row;}
printf("This pattern has %d rows.\n",i);
}
if (!strcmp(argv([1],
if(argc > 2){
repeat=atoi(argv[2]);i=1;
while(curr->next_row!=NULL && i <
repeat){i++;curr=curr->next_row;}}
repeat=i;i=90;
if(curr->next!=NULL){while(curr!=NULL) {i++;curr=curr->next;}}
else{i=curr->count;}
printf("Row %d of this pattern has %d stitches.\n", repeat,i);

'--stitch_count”)) {curr=first_stitch;

}
if (!strcmp(argv[1], "--print_chart")) {curr=first_stitch;
while(curr->next_row!=NULL){curr=curr->next_row;}
first_stitch=curr;
while(first_stitch!=NULL) {
if(curr->next!=NULL){
while(curr!=NULL){print_symbol(curr->type,1);curr=curr->next;}
} else {
while(curr!=NULL){print_symbol(curr->type,0);curr=curr->prev;}
}

printf("\n");first_stitch=first_stitch->prev_row;curr=first_stitch

B e i o

e Sample execution output

knit$./incdec --row_count

This pattern has 10 rows.

knit$./incdec --stitch_count 5

Row 5 of this pattern has 20 stitches.
knit$./incdec --stitch_count 6

Row 6 of this pattern has 18 stitches.
knit$./incdec --stitch_count 9

Row 9 of this pattern has 12 stitches.
knit$./incdec --stitch_count 2

Row 2 of this pattern has 14 stitches.

vars.knit
This program tests the use of variables in knitting programs, and the output displays the
--print_chart execution option, with knit and purl stitches shown as they appear from the right side of the
knitted work.
e Input file

split Row(a, b): pa *k1* repeat until b stitches remain p b

variable Stitch Pattern(x):

split(x, 7)

split(5, x)
CO 15
Work variable(3) 10 times
BO

e Translated output C file

#include <stdio.h>
#include <stdlib.h>

enum stitch_type { KNIT, PURL, INCREASE, DECREASE, CO };

struct stitch {
int right_side;
int count;
enum stitch_type type;
struct stitch* next;
struct stitch* prev;
struct stitch* next_row;
struct stitch* prev_row;

struct stitch* curr;
struct stitch* prev_row;
int i, repeat;
void print_symbol(enum stitch_type type, int rs) {
char symbol = 'x';
if ((type == KNIT && rs) || (type == PURL && !rs)) { symbol .
if ((type == PURL && rs) || (type == KNIT && !rs)) { symbol -
if (type == INCREASE) { symbol 'v'; }
if (type == DECREASE) { symbol AR
if (type == CO) { symbol = '_'; }
printf("%c ", symbol);
}void make_stitch(enum stitch_type type) {
struct stitch* new_stitch =
(struct stitch*) malloc(sizeof(struct stitch));
new_stitch->type = type;
new_stitch->next_row = NULL;
new_stitch->next = NULL;
new_stitch->prev curr;
int count = 1;
if (curr !'= NULL) {
curr->next = new_stitch;
count = curr->count + 1;
}
new_stitch->count = count;
new_stitch->prev_row = prev_row;
if (prev_row != NULL) {
prev_row->next_row = new_stitch;
prev_row = prev_row->prev;
} else if (type != CO) { printf("ERROR! No stitch available to
work type %d\n", type); exit(0);
} curr = new_stitch;
}

void split(int a,int b) {
for (i=0;i<a;i++){make_stitch(PURL);}
do {for (i=0;i<1;i++){make_stitch(KNIT);}}while(prev_row!=NULL &&
prev_row->count!=b);
for (i=0;i<b;i++){make_stitch(PURL);}
if (prev_row != NULL) {
printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "split");
exit(0);
}
}
int main(int argc, char* argv[]) {
int repeat;
struct stitchx first_stitch;

make_stitch(CO);

int 1i;

for (i = 1; 1 < 15; i++) {
make_stitch(CO);

}

first_stitch=curr;
for(repeat=0;repeat<10;repeat++) {

prev_row=curr;curr=NULL;
split(2,10) ;prev_row=curr;
}if(first_stitch->next_row!=NULL){first_stitch=first_stitch->next_roy
}
if (argc > 1) {
if (!strcmp(argv[1], "--row_count")) {curr=first_stitch;i=0;
while(curr!=NULL) {i++; curr=curr->next_row;}
printf("This pattern has %d rows.\n",i);
}
if (!strcmp(argv[1], "--stitch_count")) {curr=first_stitch;
if(argc > 2){
repeat=atoi(argv[2]);i=1;
while(curr->next_row!=NULL && i <
repeat){i++;curr=curr->next_row;}}
repeat=i;i=0;
if(curr->next!=NULL){while(curr!=NULL){i++;curr=curr->next;}}
else{i=curr->count;}
printf("Row %d of this pattern has %d stitches.\n", repeat,i);

}
if (!strcmp(argv[1], "--print_chart")) {curr=first_stitch;
while(curr->next_row!=NULL){curr=curr->next_row;}
first_stitch=curr;
while(first_stitch!=NULL){
if(curr->next!=NULL){
while(curr!=NULL){print_symbol(curr->type,1);curr=curr->next;}
} else {
while(curr!=NULL){print_symbol(curr->type, @) ;curr=curr->prev;}
}

printf("\n");first_stitch=first_stitch->prev_row;curr=first_stitch

B e s o

e Sample execution output

knit$./vars --print_chart

dishcloth.knit
This program, based on the example given in the tutorial, shows how closely the programs of this
knitting correspond to real, traditional knitting patterns and tests the basics of row and stitch pattern
functionality.
e Input file

Note: See
http://homespunliving.blogspot.com/2007/11/waffle-knit-dishcloth-pati
rn.html

First Row(): *k1* repeat until @ stitches remain

Second Row(): k3 *pl1* repeat until 3 stitches remain k3
Third Row(): k3 *p2, k1* repeat 10 times p2, k3

Fourth Row(): k3 *k2, p1* repeat 10 times k5

WaffleKnit Stitch Pattern():
First()
Second()
Third()
Fourth()

CO 38

Note: The first row of the stitch pattern is also a plain knit gartel
row

Work First() 3 times

Work WaffleKnit() 14 times

Work First() 4 times

BO

e Translated output C file

#include <stdio.h>
#include <stdlib.h>

enum stitch_type { KNIT, PURL, INCREASE, DECREASE, CO };

struct stitch {
int right_side;
int count;
enum stitch_type type;
struct stitch* next;
struct stitch* prev;
struct stitch* next_row;
struct stitch* prev_row;

}s

struct stitch* curr;
struct stitch* prev_row;
int i, repeat;
void print_symbol(enum stitch_type type, int rs) {
char symbol = 'x';
if ((type == KNIT && rs) || (type == PURL && !'rs)) { symbol = '.';
if ((type == PURL && rs) || (type == KNIT && !rs)) { symbol -1
if (type == INCREASE) { symbol 'v'; }
if (type == DECREASE) { symbol WA
if (type == CO) { symbol = '_'; }
printf("%c ", symbol);
}void make_stitch(enum stitch_type type) {
struct stitch* new_stitch =
(struct stitch*) malloc(sizeof(struct stitch));
new_stitch->type = type;
new_stitch->next_row = NULL;
new_stitch->next NULL ;
new_stitch->prev curr;
int count = 1;
if (curr !'= NULL) {
curr->next = new_stitch;
count = curr->count + 1;
}
new_stitch->count = count;
new_stitch->prev_row = prev_row;
if (prev_row != NULL) {
prev_row->next_row = new_stitch;
prev_row = prev_row->prev;
} else if (type != CO) { printf("ERROR! No stitch available to

work type %d\n", type); exit(0);
} curr = new_stitch;
}

void Fourth() {
for (i=0;i<3;i++){make_stitch(KNIT);}
for(repeat=0;repeat<10;repeat++) {
for (i=0;i<2;i++){make_stitch(KNIT);}
for (i=0;i<1;i++){make_stitch(PURL);}
}
for (i=0;i<5;i++){make_stitch(KNIT);}
if (prev_row !'= NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "Fourth");

exit(0);
}
}
void Third() {
for (i=0;i<3;i++){make_stitch(KNIT);}
for(repeat=0;repeat<10;repeat++){
for (i=0;i<2;i++){make_stitch(PURL);
for (i=0;i<1;i++){make_stitch(KNIT);
}
for (i=0;i<2;i++){make_stitch(PURL);}
for (i=0;i<3;i++){make_stitch(KNIT);}
if (prev_row != NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",

prev_row->count, "Third");
exit(0);

—~

}
}
void Second() {
for (i=0;i<3;i++){make_stitch(KNIT);}
do {for (i=0;i<1;i++){make_stitch(PURL);}}while(prev_row!=NULL &&
prev_row->count!=3);
for (i=0;i<3;i++){make_stitch(KNIT);}
if (prev_row != NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "Second");

exit(0);
}
}

void First() {

do {for (i=0;i<1;i++){make_stitch(KNIT);}}while(prev_row!=NULL &&
prev_row->count!=0);

if (prev_row != NULL) {

printf("ERROR! %d stitches remain after working %s Row.\n",
prev_row->count, "First");

exit(09);
}

}
void WaffleKnit() {

First();
prev_row=curr;curr=NULL;
Second() ;
prev_row=curr;curr=NULL;
Third();
prev_row=curr;curr=NULL;
Fourth();

}

int main(int argc, char* argv[]) {
int repeat;

struct stitchx first_stitch;
make_stitch(CO);

int i;

for (i = 1; 1 < 38; i++) {
make_stitch(CO);

}

first_stitch=curr;
for(repeat=0;repeat<3;repeat++){

prev_row=curr;curr=NULL;
First();prev_row=curr;

}

for(repeat=0;repeat<14;repeat++){

prev_row=curr;curr=NULL;
WaffleKnit() ;prev_row=curr;

}

for(repeat=0;repeat<4;repeat++){

prev_row=curr;curr=NULL;

First();prev_row=curr;
}if(first_stitch->next_row!=NULL){first_stitch=first_stitch->next_roy\
}

if (argec > 1) {

if (!strcmp(argv([1],

--row_count")) {curr=first_stitch;i=90;

while(curr!=NULL) {i++; curr=curr->next_row;}
printf("This pattern has %d rows.\n",i);
}
if (!strcmp(argv[1],
if(argec > 2){
repeat=atoi(argv[2]);i=1;
while(curr->next_row!=NULL && i <
repeat){i++;curr=curr->next_row;}}
repeat=1i;i=0;
if(curr->next!=NULL){while(curr!=NULL){i++;curr=curr->next;}}
else{i=curr->count;}
printf("Row %d of this pattern has %d stitches.\n", repeat,i);
}
if (!strcmp(argv[1], "--print_chart")) {curr=first_stitch;
while(curr->next_row!=NULL){curr=curr->next_row;}
first_stitch=curr;
while(first_stitch!=NULL){
if(curr->next!=NULL) {
while(curr!=NULL){print_symbol(curr->type,1);curr=curr->next;}
} else {
while(curr!=NULL){print_symbol(curr->type,0);curr=curr->prev;}
}

printf("\n");first_stitch=first_stitch->prev_row;curr=first_stitch

'--stitch_count")) {curr=first_stitch;

R i e o

L.essons L.earned

The correct approach to the AST is the most important part of a compiler project. Earlier, failed
AST strategies led to overly complex code and very slow progress. Once the most necessary parts of the
AST became clear and the clean rewrite was fully completed, the rest of the project fell into place in less
than two weeks. Setting and achieving an earlier deadline for this milestone would have allowed more time
for documentation, automated testing, and error handling.

Appendix: Code Listing

ast.ml

type var = Literal of int | Id of string

type stitch Knit of var | Purl of var | Increase | Decrease

type repeat = Times of var | Until of var
type row = {

row_name : string;

row_formals : string list;

row_start : stitch list;

row_repeat : stitch list;

repeat_condition : repeat;

row_end : stitch list;

}

type call = {
called_name : string;
actuals : var list;

}

type stitch_pattern = {
stitch_pattern_name : string;
stitch_pattern_formals : string list;
rows : call list;

}

type pattern = {
cast_on : int;
work : (call * repeat) list;

}

type program = row list * stitch_pattern list * pattern option

let string_of_var = function
Literal(l) -> string_of_int 1
| Id(name) -> name

let string_of_stitch = function
Knit(count) -> "k" * string_of_var count
| Purl(count) -> "p" * string_of_var count
| Increase -> "inc"

| Decrease -> "dec"

let string_of_repeat = function
Times(count) -> string_of_var count *

times"

| Until(remain) -> "until " * string_of_var remain * " stitches
remain"
let string_of_row row =

row.row_name * " Row (" * String.concat ", " row.row_formals A "):

A

," (List.map string_of_stitch row.row_start) *
"," (List.map string_of_stitch

String.concat

" % " A String.concat
row.row_repeat) *

" *x repeat from * to * A string_of_repeat row.repeat_condition *

A String.concat "," (List.map string_of_stitch row.row_end) *

ll\nll

let string_of_call call = call.called_name *» "(" *

String.concat ", " (List.map string_of_var call.actuals) * ")"

let string_of_stitch_pattern stitch_pattern =
stitch_pattern.stitch_pattern_name *» " Stitch Pattern (" A
String.concat ", " stitch_pattern.stitch_pattern_formals * "):\n" 1
String.concat "\n" (List.map string_of_call stitch_pattern.rows) *
"\n"

let string_of_work (call, repeat) =
"Work " 7 string_of_call call » " " A string_of_repeat repeat

let string_of_pattern = function
None -> "WHOOPS!!! No pattern?!?!?21"
| Some(pattern) -> "CO " A string_of_int pattern.cast_on * "\n" *
String.concat "\n" (List.map string_of_work pattern.work) *
"\nBO"

let string_of_program (rows, stitch_patterns, pattern) =
String.concat "\n" (List.map string_of_row rows) * "\n" A
String.concat "\n" (List.map string_of_stitch_pattern
stitch_patterns) 2
"\n" A string_of_pattern pattern * "\n"

compile.ml

open Ast
open Translate

(** Translate a program in AST form into the text of a C program. x)

let translate (rows, stitch_patterns, pattern) =
let translate_stitch = function
Knit(var) -> for_loop (string_of_var var) "make_stitch(KNIT);"
| Purl(var) -> for_loop (string_of_var var) "make_stitch(PURL);"
| Increase ->

"make_stitch(INCREASE) ;prev_row=prev_row->next;make_stitch(INCREASE)
| Decrease ->

"make_stitch(DECREASE) ;prev_row->next_row=curr;prev_row=prev_row->prsg
in
let translate_repeat body = function
Times(var) -> "for(repeat=0;repeat<" A (string_of_var var) *
"irepeat++)”
A "{\n" A body * "\n}"
| Until(var) -> "do {" * body * "}"
A "while(prev_row!=NULL && prev_row->count!='
var A ");"
in
let translate_row row =
"\nvoid " A row.row_name * "("
A (String.concat "," (List.map (fun x -> ("int " * x))
row.row_formals))
~) AT
A debug ("printf(\"" A row.row_name * "\\n\");\n") A "\n"
A (String.concat "\n" (List.map translate_stitch row.row_start))
A "\n"
A translate_repeat
(String.concat "\n" (List.map translate_stitch row.row_repeat)]
row.repeat_condition
A "\n" A (String.concat
row.row_end))
A "\nif (prev_row != NULL) {\n"
A" printf(\"ERROR! %d stitches remain after working %s
Row.\\n\",k"
A" prev_row->count, \"" A row.row_name * "\");\n"
A" exit(@);\n"
AR AV
in
let translate_call call =
call.called_name * "("
A (String.concat "," (List.map string_of_var call.actuals)) A
");" in
let translate_stitch_pattern stitch_pattern =
"\nvoid " * stitch_pattern.stitch_pattern_name * " ("

A String.concat ", stitch_pattern.stitch_pattern_formals * ")

A string_of_var

\n" (List.map translate_stitch

{\n"
A debug ("printf(\"" 7 stitch_pattern.stitch_pattern_name *
"\\n\");\n")
A String.concat new_row (List.map translate_call
stitch_pattern.rows)
A "\n}\n\n" in
let translate_pattern_repeat (call, repeat) =
translate_repeat (new_row * translate_call call *
"prev_row=curr;") repeat
in
match pattern with
None -> ":("
| Some(pattern) ->
preamble
A String.concat "\n" (List.map translate_row rows)
A String.concat "\n" (List.map translate_stitch_pattern
stitch_patterns)
A "\nint main(int argc, charx argv[]) {\n"
"int repeat;\n"
"struct stitch* first_stitch;\n"
cast_on pattern.cast_on
"first_stitch=curr;\n"
String.concat "\n" (List.map translate_pattern_repeat
pattern.work)
A final_output

> > > > >

knit.ml

type action = Ast | Compile

let _ =

let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [("-a", Ast); ("-c

else Compile in

let lexbuf = Lexing.from_channel stdin in

let program = Parser.program Scanner.token lexbuf in

match action with

Ast -> let listing = Ast.string_of_program program

in print_string listing

| Compile -> print_string (Compile.translate program)

, Compile)]

Makefile

OBJS = ast.cmo parser.cmo scanner.cmo translate.cmo compile.cmo
knit.cmo

knit : $(OBJS)
ocamlc -o knit $(0BJS)

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

%.cmo : %.ml
ocamlc -c $<

%.cmi : %.mli
ocamlc -c S<

.PHONY : clean

clean
rm -f knit parser.ml parser.mli scanner.ml testall.log \
*.cmo *.cmi *x.out *.diff

Generated by ocamldep *.ml *.mli

ast.cmo

ast.cmx

compile.cmo : translate.cmo ast.cmo

compile.cmx : translate.cmx ast.cmx

knit.cmo : scanner.cmo parser.cmi compile.cmo ast.cmo
knit.cmx : scanner.cmx parser.cmx compile.cmx ast.cmx
parser.cmo : ast.cmo parser.cmi

parser.cmx : ast.cmx parser.cmi

scanner.cmo : parser.cmi

scanner.cmx : parser.cmx

translate.cmo

translate.cmx

parser.cmi : ast.cmo

parser.mly

%{ open Ast %}

%token LPAREN RPAREN COMMA COLON STAR
%token KNIT PURL INC DEC CO BO

%token WORK REPEAT TIMES UNTIL REMAIN
%token ROW STPATT

%token <int> LITERAL

%token <string> ID

%token EOL EOF

%start program
%type <Ast.program> program

%%

program:
/* nothing =/ { [], [], None }
| program EOL { S$1 }
| program row { let (rows, stitch_patterns, pattern) = $1 in
§2 :: rows, stitch_patterns, pattern }
| program stitch_pattern { let (rows, stitch_patterns, pattern) = $]

rows, $2 :: stitch_patterns, pattern }
| program pattern { let (rows, stitch_patterns, _) = $1 in
rows, stitch_patterns, $2 }
| program error { print_endline "KYRA :("; ([], [], None) }

row:
ID ROW LPAREN formals_opt RPAREN COLON
stitch_list_opt STAR stitch_list STAR REPEAT repeat
stitch_list_opt EOL
{ { row_name = $1;
row_formals = $4;
row_start = $7;
row_repeat = List.rev $§9;
repeat_condition = $12;
row_end = $13 } }

formals_opt:
/* nothing */ { [] }
| formal_list { List.rev $1 }

formal_list:

1D { [$1] }
| formal_list COMMA ID { $3 :: $1 }

stitch_pattern:
ID STPATT LPAREN formals_opt RPAREN COLON EOL call_list EOL { {
stitch_pattern_name = $1;
stitch_pattern_formals = $4;
rows = List.rev $8; } }

pattern:
CO LITERAL EOL work_list BO EOL { Some({ cast_on = $2; work =
List.rev $4; }) }

call:
ID LPAREN vars_opt RPAREN { { called_name = $1; actuals = $3; } }

call_list:
/* nothing */ { [] }
| call_list call EOL { $2 :: $1 }

work_list:
/* nothing */ {]}
| work_list WORK call repeat EOL { ($3, $4) :: $1 }
repeat:
var TIMES { Times(S$1) }

| UNTIL var REMAIN { Until($2) }

stitch_list_opt:
/* nothing */ { [] }
| stitch_list { List.rev $1 }

stitch_list:
stitch { [$1] }
| stitch_list COMMA stitch { $3 :: $1 }

stitch:
KNIT var { Knit($2) }
| PURL var { Purl(S$2) }

| INC { Increase }
| DEC { Decrease }
vars_opt:
/* nothing */ { [] }
| var_list { List.rev $1 }
var_list:
var { [$1] }

| var_list COMMA var { 83 :: $§1 }

var:
LITERAL { Literal($1) }
| ID { Id($1) }

scanner.mll

{ open Parser }

rule token = parse

"stitches remain" { REMAIN }

"Stitch Pattern” { STPATT }

"repeat" { REPEAT }

['0'-'9"]+ as 1xm { LITERAL(int_of_string 1lxm) }

['a'-'j" '1'-'0" 'q'-'z" 'A'-'Z']['a'-"z" 'A'-'Z' '0'-'9" '_']%

as 1xm { ID(1xm) }

| eof { EOF }
| _ as char { raise (Failure("illegal character " * Char.escaped
char)) }

[" " "\t" '\r'"] { token lexbuf } (* Whitespace *)
| "Note: " { comment lexbuf } (* Comments *)
| "\n' { EOL }
| (! { LPAREN }
| ') { RPAREN }
| { COMMA }
| { COLON }
| { STAR }
| 'k { KNIT }
| 'p’ { PURL }
| "inc" { INC }
| "dec" { DEC }
| "CO" { CO }
| "BO" { BO }
| "Row" { ROW }
| "Work" { WORK }
| "times" { TIMES }
| "until" { UNTIL }
|
|
|
|
|

and comment = parse
"\n" { token lexbuf }
| _ { comment lexbuf }

translate.ml

(*# To turn on debug output in the C program generated by the compilel
change this debug function to return the log statement instead of |

*)
let debug log =
(* Code snippets to be included in the generated C program. *)
let includes =

"#include <stdio.h>\n" %

"#include <stdlib.h>\n\n"
let stitch_enum =

"enum stitch_type { KNIT, PURL, INCREASE, DECREASE, CO };\n\n"

let

let

let

let

stitch_struct =

"struct stitch {\n" *

int right_side;\n" 2

int count;\n" A

enum stitch_type type;\n" *

struct stitch* next;\n" A

struct stitch* prev;\n" #

struct stitch* next_row;\n" *

struct stitch* prev_row;\n" #

"};\n\n"

globals =

"struct stitch* curr;\nstruct stitch* prev_row;\n" #

"int i, repeat;\n"

print_stitch_symbol =

"void print_symbol(enum stitch_type type, int rs) {\n" A

" char symbol = 'x';\n" A

" if ((type == KNIT && rs) || (type == PURL && !rs)) { symbol
FAn" A

" if ((type == PURL && rs) || (type == KNIT && !rs)) { symbol
F\n" A

" if (type == INCREASE) { symbol = 'v'; }\n" *

" if (type == DECREASE) { symbol = '/'; }\n" *

" if (type == CO) { symbol = '_"'; }\n" *
printf(\"%c \", symbol);\n" A

"y
make_stitch =
"void make_stitch(enum stitch_type type) {\n" *
debug " printf(\"type %d\t\", type);\n" A
" struct stitch* new_stitch =\n" A
(struct stitch*) malloc(sizeof(struct stitch));\n" A

new_stitch->type = type;\n" *
new_stitch->next_row = NULL;\n" *
" new_stitch->next = NULL;\n" *
new_stitch->prev = curr;\n" A
int count = 1;\n" *
if (curr !'= NULL) {\n" A

curr->next = new_stitch;\n" *

count = curr->count + 1;\n" #
" R\n" A
" new_stitch->count = count;\n" *
debug " printf(\"stitch count: %d\\t\", count);\n" A

new_stitch->prev_row = prev_row;\n" A

" if (prev_row != NULL) {\n" A
debug " printf(\"prev row count: %d\\n\", prev_row->count);\n]
" prev_row->next_row = new_stitch;\n" #
prev_row = prev_row->prev;\n" *

"} else if (type != CO) {" *
" printf(\"ERROR! No stitch available to work type %d\\n\",

type) ;" *
" exit(@);\n" A
n }ll A
" curr = new_stitch;\n" A
n }\nll

(* Functions and definitions to be included at the beginning of the
generated
program text. *)
let preamble = includes * stitch_enum * stitch_struct * globals
A print_stitch_symbol * make_stitch

let for_loop times body = "for (i=0;i<" * times * ";i++){" * body *
ll}ll
let new_row = "\nprev_row=curr;curr=NULL;\n"

let cast_on count =
"make_stitch(CO);\n" A
"int i;\n" 2

"for (i = 1; i < " A string_of_int count *» "; i++) {\n" A
"make_stitch(CO);\n" A
II}\nII

(*# Final program output options. *)
let print_row_count =
debug "printf(\"row_count\\n\");"
A "curr=first_stitch;i=0;\nwhile(curr!=NULL) {i++;
curr=curr->next_row; }"
A "\nprintf(\"This pattern has %d rows.\\n\",i);\n"
let print_stitch_count =
debug "printf(\"stitch_count\\n\");" * "curr=first_stitch;\n"
A "if(arge > 2){\n"

A" repeat=atoi(argv[2]);i=1;\n"

A" while(curr->next_row!=NULL && i <
repeat){i++;curr=curr->next_row;}}\n"

A" repeat=i;i=0;\n"

A "

if(curr->next!=NULL){while(curr!=NULL) {i++;curr=curr->next;}}\n"

A " else{i=curr->count;}\n"

A" printf(\"Row %d of this pattern has %d
stitches.\\n\", repeat,i);\n"
let print_chart =

debug "printf(\"print_chart\\n\");"

A "curr=first_stitch;\n"
"while(curr->next_row!=NULL){curr=curr->next_row;}\n"
"first_stitch=curr;\n"

"while(first_stitch!=NULL){\n"
" if(curr->next!=NULL){\n"

> > > > >

while(curr!=NULL){print_symbol(curr->type,1);curr=curr->next;}\n"

At} else {\n"

A n
while(curr!=NULL){print_symbol(curr->type,0);curr=curr->prev;}\n
}\n n

A n

printf(\"\\n\");first_stitch=first_stitch->prev_row;curr=first_stitc}

A "\n}\n"
let final_output =

"if(first_stitch->next_row!=NULL){first_stitch=first_stitch->next_roy
}\nll

A "if (arge > 1) {\n"

A "if (!stremp(argv[1], \"--row_count\")) {" * print_row_count A
ll}\nll

A "if (!stremp(argv[1], \"--stitch_count\")) {" A
print_stitch_count * "}\n"

A "if (Istremp(argv[1], \"--print_chart\")) {" * print_chart *
ll}\nll

A ||}\n}\nu

