
MiniMat Language Reference Manual

Terence Lim - tl2735@columbia.edu

June 29, 2016

1 Introduction

MiniMat is a simple language to support matrix-based programming, which contains a core
set of primitives that can be assembled into more complicated abstractions for matrix expres-
sions, linear algebraic formulas and statistical algorithms. MiniMat is aimed at programmers
from technical domains who work primarily with matrix expressions. It treats large data
types such as a two-dimensional matrix as a primitive data type and accepts syntax so that
matrices are easy to initialize, subset, combine and reshape, and all matrix operators are
defined by writing functions in the MiniMat language itself.

The compiler front end components (lexer, parser, semantic analysis and intermediate
code generation) are written in OCaml, OCamllex, OCamlyacc and OCaml Llvm, and trans-
lates source language into LLVM IR target code. See Chart 1.

The language reference manual is in section 2. Section 3 describes some sample programs
written in the MiniMat language.

1.1 Under the hood (Architecture)

1. All matrix operators are implemented with and bound to helper functions coded in
the MiniMat language itself, including arithmetic (+ - * /), relational (< <= > >=

== !=), and mathematical (inverse, eigenvalue, determinant) expressions.

2. Matrices are constructed and subselected with “matlab-like” expressions. Internally,
bracketed expressions representing matrix values are parsed into lists (i.e. rows) of lists
(i.e. columns) of stuff (e.g. floats or smaller matrix expressions), then the compiler’s
code generation component calls vertcat() and horzcat(), which are functions written
in MiniMat language rather than directly in OCaml or LLVM, repeatedly on every
element column-by-column and row-by-row (i.e. nested “fold left” iterations) to build
up its LLVM storage representation.

3. A matrix data type is represented in the target LLVM language as an array of floats
of variable size (with a [0 x double] struct template) allocated from the stack,
prepended with a 16-byte header that identifies the actual size, #cols and #rows.

Terence Lim - tl2735@columbia.edu 1

MiniMat Language Reference Manual

Chart 1: Block diagram of major components of translator

Source
Code

hello.mm

Lexical
Analyzer
scanner.ml

Syntax
Analyzer
parser.ml

Semantic
Analyzer
semant.ml

Code
Generator
codegen.ml

Target

LLVM

Code

hello.ll

Executable

hello

Lexical

expressions

scanner.mll

Language

grammar

parser.mly

Abstract
Syntax

Tree types
ast.ml

Standard

Libraries

stdlib.mm

math.mm

stdio.mm

tokens AST AST

llc

ocamllex ocamlyacc

Hence the size of a matrix associated with an identifier can change, and is tracked au-
tomatically along with the object: the cols, rows and length built-in functions peek
into the header stored before the data block to return the actual matrix dimensions.

4. For functions to return large data types such as matrices, the compiler takes care of
temporarily copying to a block of heap memory, then back to the stack of the caller.

5. Although floatmat is implemented as a two-dimensional matrix of floats, it allows both
row-column and “linear” index methods (see vector and matrix reference expressions in
the language manual), so a floatmat constructed with either one row or one column can
be referenced just like a one-dimensional object. Nevertheless, we retained the intvec

data type to represent a one-dimensional vector of integers, designated for indexing
purposes to access multiple elements of a matrix. Several matrix operators such as
relations (which are implemented as functions written in MiniMat language) return
an intvec of linear indices of those elements that satisfy the specified relationship,
which in turn can then be used to help extract or modify those elements in the matrix.

Terence Lim - tl2735@columbia.edu 2

MiniMat Language Reference Manual

It seemed inelegant to use floatmats and have to round them to integral values to
serve as indices; and more natural to separate data types of variables used for indexing
versus data storage purposes.

6. Function declarations in the compiler are extended to include external function pro-
totype declarations and global constant definitions. I felt it is very useful to be able
to specify values at compile-time (e.g. for enumerations or configuration values) and
to incorporate external C library functions (in particular, specialized numerical and
graphical libraries like Lapack and gnuplot).

Terence Lim - tl2735@columbia.edu 3

2 Language

This manual describes the MiniMat language specification.

2.1 Lexical Conventions

A program is reduced to a stream of tokens by the initial lexical analysis or scanning phase.

2.1.1 Tokens

There are five classes of tokens: identifiers, keywords, literals (of data types: integer, floating
point, boolean and string), operators, and separators (e.g. parentheses, brackets, braces,
semi-colons). Blanks, tabs, newlines, form feeds and comments (as described below) are
ignored except to separate tokens.

2.1.2 Comments

The characters /* and */ demarcate a comment. Comments do not nest, and can be split
across multiple lines.

2.1.3 Identifiers

An identifier is a sequence of letters, digits and the underscore character. The first character
must be a letter.

2.1.4 Keywords

The following identifiers are reserved for use as keywords and implemented as built-in in-
structions:

float int void bool string if else for while return printf external constant

floatmat intvec handle sizeof length end rows cols put get new float_of_int

int_of_float

Additionally, matrix expressions, such as construction, assignment and selection, are
implemented with helper functions written in the MiniMat language and included in the
standard library file (stdlib.mm). Similarly, all matrix operators are also implemented with
and bound to functions coded in MiniMat and included in the math and i/o library files
(math.mm and stdio.mm).The names and descriptions of these functions are listed in the
last subsection (Library functions) of this manual.

MiniMat Language Reference Manual

2.1.5 Literals

There are four types of literals.

• Integer: An integer literal, with data type int, consists of a sequence of digits.

• Floating: A floating literal, with data type float, consists of an optional integer part,
a decimal point and a fraction part. The integer and fraction parts both consist of a
sequence of digits. The integer part may be missing, and both the decimal point and
fraction part are required.

• Boolean: A boolean literal is one of two values true or false, of data type bool.

• String: A string literal is a sequence of characters surrounded by double quotes, of
data type string. A null byte is appended to the string C-style so that functions for
printing or comparing strings can scan to find its end.

2.2 Data types

There are three small, three large, and two other data types.

2.2.1 Small types

• int: A signed integer has 32-bit size.

• float: A floating point value has 64-bit size (i.e. a double in C-parlance).

• bool: A boolean requires 1-bit size.

2.2.2 Large types

• floatmat: A two-dimensional matrix of floating point values, laid out in row-major
order – i.e. sequential values on the same row are stored adjacent to each other. Size
information, such as the number of rows and columns, is stored with the object. A
one-dimensional matrix can be obtained by specifying a matrix with either one row or
one column, and then using the linear indexing method to reference matrix contents:
see the next subsection on matrix and vector reference expressions.

• intvec: A one-dimensional vector of integer values. Size information such as length
is stored with the object. This data type is most helpful for providing a list of index
positions to access subsets of a matrix or another vector.

• string: Strings are stored as null-terminated sequences of characters, up to 255 char-
acters length (excluding terminal null).

Storage for large data types is allocated from the stack, which simplifies memory manage-
ment; however, when a function exits, matrices and vectors that were newly constructed may
be discarded along with the call stack frame without intervention. Hence callee functions

Terence Lim - tl2735@columbia.edu 4

MiniMat Language Reference Manual

return large data types by temporarily copying to a block of heap memory, then back to the
stack of caller: this swap is automatically implemented during compilation (code generation
phase).

2.2.3 Other types

• handle: This data type is only utilized when calling external C library functions
which may need to pass around a pointer to an external object. It is a 64-bit value
representing a memory address.

• void: Specifying an empty set of values, it is used as the type returned by functions
that generate no value.

2.2.4 Conversions

Generally, operators will not cause conversion of the value of an operand from one type to
another, i.e. there is no automatic type casting. MiniMat provides two primitive built-in
conversion functions float of int and int of float. When a value of a floating type is
converted to integral type, the fractional part is discarded.

2.3 Expressions

The precedence of expression operators is the same as the order of the following major
subsections, highest precedence first. Within each subsection, the operators have the same
precedence, with left- or right-associativity as specified.

2.3.1 Primary Expressions

Primary expressions are identifiers, literals or expressions in parentheses.
An identifier is a primary expression provided it has been suitably declared as a constant;

local or external function; or global, local or function argument variable. Its type is specified
by its declaration.

The type of a literal depends on its form as an integer, floating, boolean or string literal.
A parenthesized expression is a primary expression whose type and value are identical to

the unadorned expression.

2.3.2 Function Calls

A function call is a functional designator identifier, followed by parentheses containing a pos-
sibly empty, comma-separated list of arguments to the function. Arguments are completely
evaluated before the function is entered. Recursive calls are permitted.

In preparing for the call to a function, a copy is made of small data type arguments:
all argument-passing of int, float, bool and handle is by value. However, floatmat,
intvec and string data type arguments are passed by reference: a function changing the
values within its parameter objects will affect the contents of the original.

Terence Lim - tl2735@columbia.edu 5

MiniMat Language Reference Manual

If the callee function returns a data type of floatmat, intvec or string, the compiler
takes care of making a temporary copy of the returned object in a block of heap memory,
then copying back to space allocated in the stack frame of the calling function.

2.3.3 Sizeof Operators

The sizeof functions yield the dimensions of its operand, which can be of type floatmat

or intvec: length, end, sizeof, rows, cols return as an integer value the number of
elements, last index position, number of bytes required to store, number of rows and number
of columns respectively.

2.3.4 Matrix and Vector Expressions

A matrix can be defined as semi-colon-terminated rows of comma-separated floating points or
smaller matrices (or their identifiers), surrounded by square brackets, of data type floatmat.
Example: [1.0, 2.0, 3.0; A, 6.0;]

A vector can be defined as a comma-separated list of integers or shorter vectors (or their
identifiers), surrounded by square brackets, of data type intvec. Example: [1, 2, v, 3].

A matrix expression always ends with a semi-colon just before the closing bracket; a vector
never does. A matrix requires floating point numbers, which always contain a decimal point;
a vector requires integers, which do not.

A new object can be created using the new(...) operator: with one argument, it
returns a new intvec with the specified length; and with two arguments, it returns a new
floatmat with the specified number of rows and number of columns respectively. Its values
are initialized to zero.

2.3.5 Matrix and Vector References

An identifier followed by two comma-separated expressions in square brackets is a postfix
expression denoting a subscripted matrix reference. The two expressions together comprise
the row-column index method to reference the matrix. They can each either be of int type
(identifying a single column or row) or intvec type (representing several columns or rows).
This row-column indexing method can be used for assigning values both to or from a subset
of a matrix. Example: A[1,2] = B[2,3] or A[1,[1,2,3]] = B[2,[2,4,6]].

An identifier followed by an expression in square brackets is a postfix expression denoting
a subscripted vector reference. If the referenced operand has type floatmat, then the brack-
eted expression uses the linear index method: MiniMat treats the matrix as if its elements
were strung out in a long vector by going across the rows consecutively, i.e. in row-major
order. The bracketed expression can each either be of int type (representing a single ele-
ment) or intvec type (identifying a subset of elements). This linear indexing method can
be used for assigning values both to or from a subset of a matrix or vector. Example: A[1]
= B[2] or A[[1,2,3]] = B[[2,4,6]].

The value stored at its linear index position can also be selected with the get(object,int
position) operator. If its first argument object is an intvec, an integer value is returned; if
object is a floatmat, a floating value is returned.

Terence Lim - tl2735@columbia.edu 6

MiniMat Language Reference Manual

A single value can be stored a linear index position with the put(value,object,int position)
operator. The first two arguments value,object may either be of types int,intvec, or types
float,floatmat, which respectively stores an integer value into a (integer) vector, or a
floating value into a (floating) matrix.

2.3.6 Transpose operator

• Transpose (’): This is a postfix expresson that reshapes its matrix argument to
transposed form, swapping its rows and columns. The operand, and hence result, are
of type floatmat.

2.3.7 Unary operators

Unary operators are right-associative.

• Unary Minus (-): The operand must be int, float, intvec or floatmat, and the
result is the negative of (all elements of) its operand.

• Logical Negation (!): The operand must have boolean type, and the result is the
opposite of (i.e. not) the operand.

2.3.8 Power Operator

• Power (^): This operator is left-associative. When the left operand has type float,
the right operand must have type float which is the power by which the left operand
is raised to. The right operand k must have type int when the left operand has type
floatmat, in which case it is matrix-multiplied by itself k times.

2.3.9 Multiplicative Operators

• Multiplicative operators (* / %): The multiplication, division and remainder op-
erators are left- associative.

The two operands must have the same type. When they are of type float or int, the
binary * operator yields the product, while the binary / yields the quotient, and the %

operator the remainder of the division of the first operand by the second; if the second
operand is 0, the result is undefined.

When the operands are of type intvec, the binary operators are applied pairwise by
element, and the result is returned in an intvec of the same length.

When the operands are of type floatmat, the binary * operator denotes matrix mul-
tiplication. The binary / operator yields the coefficients of a least squares regression
of the left operand on the right. The binary % operator yields the deviations from this
regression.

Terence Lim - tl2735@columbia.edu 7

MiniMat Language Reference Manual

2.3.10 Additive Operators

• Additive operators (+ -): The addition and subtraction operators are left-associative.

The two operands must have the same type. When they are of type float or int, the
binary + operator yields the sum, while the binary - yields the difference of the two
operands.

When the operands are of type intvec or floatmat, the binary operators are applied
pairwise by element, and the result is returned in an intvec or floatmat of the same
size.

2.3.11 Colon Expressions

• Colon operators with stride (::): This operator takes three int operands and
yields an intvec listing numbers ranging between the first to third operands, with the
second operand representing the stride to skip over. The stride can be negative, in
which case the first operand must be at least as large as the third operand. Example:
9:-2:1 returns an intvector containing odd integers between 9 and 1 inclusive in
descending order. A stride value of 1 can be left out of the expression, but the two
colons must be immediately adjacent. Example: 1::5 returns an intvector containing
all integers between 1 and 5.

2.3.12 Relational Operators

• Ordering operators (< > <= >=): The less than, greater than, less or equal, and
greater or equal binary operators all yield the boolean value of the specified relation,
when the operands are of type int or float.

When the operands are of type floatmat, the binary operators are applied pairwise
element-by-element; the linear indices of pairwise elements where the specified relation
is true are returned in an intvec.

• Equality operators (== !=): The equal and not equal binary operators all yield the
boolean value of the specified relation, when the operands are of type int, float or
bool.

When the operands are of type floatmat, the binary operators are applied pairwise
element-by-element; the linear indices of pairwise elements where the specified relation
is true are returned in an intvec.

When the operands are of type string, the strings’ character contents are compared:
strings are not equal when their respective characters in any one position index are not
the same.

2.3.13 Logical Operators

• Logical AND (&&): This operator returns true if both its boolean operands are also
true. It is left-associative, and guarantees left-to-right evaluation: if the first operand

Terence Lim - tl2735@columbia.edu 8

MiniMat Language Reference Manual

evaluates to false, the value of the expression is false. Otherwise the right operand is
evaluated.

• Logical OR (||): This operator returns true if either of its boolean operands are also
true. It is left-associative, and guarantees left-to-right evaluation: if the first operand
evaluates to true, the value of the expression is true. Otherwise the right operand is
evaluated.

2.3.14 Assignment

• Assignment operator (=): The left operand must be a properly declared identifier
or a selection from a matrix or vector. The value of the right expression replaces that
of the object referred to by the right operand. When the right operand is an identifier
with type floatmat, intvec or string, a new copy of its values is made and assigned
to the left operand, rather than just a reference, i.e. assignment is by value.

2.4 Declarations

Declarations specify the interpretation given to each identifier. Declarations that also reserve
storage are called definitions.

2.4.1 Type Specifiers

The type-specifiers are int float bool intvec floatmat string handle void. One type-
specifier and one identifier name are given in each declaration statement.

2.4.2 Global Variables

Only global variables with small data type int, float, bool can be declared. Values of
global variables can be accessed and changed by any function.

2.4.3 Global Constants

Global constant declarations have the form constant type ID = literal;. Only integer,
floating, boolean and string literals can be assigned as values of constants. Constant values
can be accessed by any function, but cannot be changed. However, their declarations are
suspended when global or local variables in scope are declared with the same name: see the
following subsection on Lexical Scope.

2.4.4 Functions

A function definition has the form type ID (parameter-list) {body-of-statements}, where
the parameter list contains (possibly empty) comma separated type declarations of the func-
tion parameters.

Terence Lim - tl2735@columbia.edu 9

MiniMat Language Reference Manual

2.4.5 External functions

External C functions can be declared and used within MiniMat programs, assuming they are
loaded in the linker stage. An external function declaration has the form type ID (parameter-
list);, where the (possibly empty) parameter list contains comma separated type declarations
of the function parameters. The following list maps MiniMat data types (to C-language ex-
ternal function data types): int (int32 t), float (double), bool (int8 t), string (char *),
intvec (int32 t *), floatmat (double *), handle (void *).

2.5 Statements

Statements can be of several types, and are executed in sequence.

2.5.1 Expression statements

Most statements are expression statements, such as assignments or function calls.

2.5.2 Compound statements

The compound statement, or block, can be used to execute several statements where one is
expected. The bodies of a function definition or while/for loops are a compound statements,
as is any list of statements enclosed within braces { }.

2.5.3 Selection

The if statement chooses a flow of control. It has two forms: if (expression) statement or
if (expression) statement else statement. If the expression, which must have bool type
when evalated, is true then the first substatement ie executed. In the second form, the
second substatement is executed if the expression is false. The else ambiguity is resolved
by connecting to the last encountered else-less if.

2.5.4 Iteration

The two forms of iteration statements specify looping.
The while statement has the form while (expression) statement. The substatement is

executed repeatedly so long as the value of the expression remains true; the expression must
evaluate to a bool type.

The for statement has the form for (expression1 ; expression2; expression3) statement.
The first expression is evaluated once to initialize for the loop, and can have any type. The
second expression must have bool type; it is evaluated before each iteration, and if it becomes
false, the loop is terminated. The third expression is evaluated after each iteration, and
thus specifies a re-initialization for the loop; there is no restriction on its type. The first and
third expressions may be dropped, but the second expression is required.

Terence Lim - tl2735@columbia.edu 10

MiniMat Language Reference Manual

2.6 Lexical Scope

Identifiers may specify either functions or parameters (i.e. functional arguments, local vari-
ables, global variables, and constants). The same identifier name may be used for each of
these two purposes and will not interfere with one another.

The scope of a parameter of a function definition begins at the start of the block defining
the function, persists through the function and ends at the end of the declarator. If an
identifier is declared at the head of a function (i.e. a local variable), any declaration of the
identifier outside the function as a global variable or constant is suspended until the end
of the function. If a global variable is explicitly declared, then any declaration of a global
constant with the same identifier name is suspended.

2.7 Library functions

This section describes the support functions coded in the MiniMat language itself that are
included in several library files. These help implement all the matrix and vector expressions
and operators. Only the functions listed in the first panel below are built-in: in the determi-
nation of what absolutely needs to be primitive rather than coded in the Minimat language
itself, the former set generally has access to unexposed internal memory structures or calls
intrinsic low-level instructions.

Built-in primitive functions:

Function Description

void printf(string format,...)

float float of int(int)

int int of float(float)

int sizeof(object)

int length(object)

int end(object)

int rows(object)

int cols(object)

void put(value, object, int) polymorphic function to assign a value into an indexed position
of a matrix or vector

value get(object, int) polymorphic function to select a value from an indexed position
of a matrix or vector

object new(...) polymorphic function to construct a new matrix or vector of the
specified dimensions

2.7.1 Standard library: stdlib.mm

Functions for matrix expressions written in MiniMat language included in stdlib library:

Function Description

floatmat vertcat(floatmat left, floatmat right) helper to build matrix expression, concatenates
columns to make taller matrix

Terence Lim - tl2735@columbia.edu 11

MiniMat Language Reference Manual

floatmat horzcat(floatmat left, floatmat right) helper to build matrix expression, concatenates rows
to make wider matrix

floatmat matselect(floatmat right, intvec se-
lectrow, intvec selectcol)

helper for matrix subset select expression

void matassign(floatmat left, intvec selectrow,
intvec selectcol, floatmat right)

helper for matrix subset assignment expression

floatmat matcopy(floatmat from) creates copy of matrix values

intvec veccopy(intvec from) creates copy of vector values

intvec veccat(intvec left, intvec right) helper to build vector expression

intvec vecstride(int beg, int by, int end) helper to build colon expression. bound to :: opera-
tor.

intvec vecselect(intvec right, intvec select) helper for vector subset select expression

void vecassign(intvec left, intvec select, intvec
right)

helper for vector subset assignment expression

void linassign(floatmat left, intvec select,
floatmat right)

helper for matrix subset assignment expression, lin-
ear index method

floatmat linselect(floatmat right, intvec select) helper for matrix subset select expression, linear in-
dex method

float matget(floatmat, int) gets floating value from a linear index position in
matrix. checks that index in bounds

float matgetrc(floatmat, int, int) gets floating value from a row-column position in ma-
trix. checks that index in bounds

int vecget(intvec, int) gets floating value from a linear index position in
vector. checks that index in bounds

void matput(float, floatmat, int) puts floating value into a linear index position in ma-
trix. checks that index in bounds

void matputrc(float, floatmat, int, int) puts floating value into a row-column position in ma-
trix. checks that index in bounds

int vecput(intvec, int) puts integer value into a linear index position in vec-
tor. checks that index in bounds

floatmat matnew(int row, int col) returns a new matrix with specified dimensions.
checks that row and col both positive integer values

intvec vecnew(int len) returns a new vector with specified length. checks
length is positive integer value.

2.7.2 Math library: math.mm

Functions for matrix operators and math written in MiniMat language included in math
library:

Function Description

intvec vecadd(intvec u, intvec v) vector addition. bound to vector + operator

intvec vecsub(intvec u, intvec v) vector subtraction. bound to vector - operator

intvec vecmul(intvec u, intvec v) vector multiplication. bound to vector * operator

intvec vecdiv(intvec u, intvec v) vector division. bound to vector / operator

intvec vecrem(intvec u, intvec v) vector remainder. bound to vector % operator

Terence Lim - tl2735@columbia.edu 12

MiniMat Language Reference Manual

intvec vecneg(intvec right) vector unary minus. bound to vector - unary operator

floatmat matadd(floatmat u, floatmat v) matrix addition. bound to matrix + operator

floatmat matsub(floatmat u, floatmat v) matrix subtraction. bound to matrix - operator

floatmat matmul(floatmat u, floatmat v) matrix multiplication. bound to matrix * operator

floatmat matdiv(floatmat y, floatmat x) matrix division. bound to matrix / operator

floatmat matrem(floatmat y, floatmat x) matrix remainder. bound to matrix % operator

floatmat mattransp(floatmat right) matrix transpose. bound to matrix ’ operator

floatmat matneg(floatmat right) matrix unary minus. bound to matrix - unary operator

floatmat matpow(floatmat u, int k) matrix subtraction. bound to matrix - operator

floatmat inv(floatmat v) matrix inverse

intvec matlt(floatmat u, floatmat v) matrix less than. bound to matrix < operator

intvec matle(floatmat u, floatmat v) matrix less or equal. bound to matrix <= operator

intvec matgt(floatmat u, floatmat v) matrix greater than. bound to matrix > operator

intvec matge(floatmat u, floatmat v) matrix greater or equal. bound to matrix >= operator

intvec mateq(floatmat u, floatmat v) matrix equal. bound to matrix == operator

intvec matne(floatmat u, floatmat v) matrix not equal. bound to matrix != operator

float det(...) determinant

float cond(...) condition number

int rank(...) rank

floatmat eig(...) eigenvalue decomposition

floatmat svd(...) singular value decomposition

floatmat lu(...) LU factorization

floatmat qr(...) QR factorization

floatmat chol(...) Cholesky factorization

floatmat rref(...) reduced row echolon form

floatmat adjoint(...) adjoint

2.7.3 I/O library: stdio.mm

Functions for input/output and type conversions written in MiniMat language included in
stdio library.

Function Description

bool stringeq(string a, string b) string equals. bound to string == operator

bool stringne(string a, string b) string not equals. bound to string != operator

float float of string(string s) converts string to float

int int of string(string s) converts string to int

intvec vec of int(int i) converts int to intvec

int int of vec(intvec v) converts vecint[0] to int

floatmat mat of float(float i) converts float to floatmat

float float of mat(floatmat v) converts floatmat[0] to float

floatmat mat of vec(intvec v) converts vec to mat

intvec vec of mat(floatmat v) converts mat to vec

Terence Lim - tl2735@columbia.edu 13

MiniMat Language Reference Manual

void printbool(bool b) prints a boolean literal

void printfloat(float f) prints a floating literal

void printvec(intvec v) prints an intvec

void printmat(floatmat v) prints a floatmat

string next() returns next string, up to 255 characters long, from
stdin; or empty string "" at end of input. Ignores
white space.

void print(int)

void printb(bool)

Terence Lim - tl2735@columbia.edu 14

3 Sample Programs

3.1 Expressions

This sample program illustrates how to write expressions in the MiniMat language to:

1. Initialize a new matrix

2. Augment matrices

3. Select a subset from a matrix

4. Assign to a subset of a matrix

Listing 1: MiniMat program to manipulate matrix expressions

1 i n t main () {
2 f l o a tma t Z ;
3 f l o a tma t Y ;
4 f l o a tma t X ;
5 i n t v e c I ;
6

7 /* Create a size=3 identity matrix */

8 X = matnew (3 , 3) ;
9 I = 0 : c o l s (X)+1: end (X) ; /* linear indexes of its diagonal */

10 X[I] = [1 . 0 ;] ; /* assign ones to diagonal */

11 p r i n t f ("Identity matrix:\n") ;
12 p r i n tmat (X) ;
13

14 /* Create a 3X3 matrix of two */

15 Y = matnew (3 , 3) + [2 . 0 ;] ;
16 p r i n t f ("Matrix of 2’s:\n") ;
17 p r i n tmat (Y) ;
18

19 /* Populate matrix with increasing values counting from 1.0 by 2.0*/

20 Z = matnew (3 , 3) ;
21 Z [0 : : end (Z)] = mat o f v e c (1 : 2 : 2 ∗ l e n g t h (Z)) ;
22 p r i n t f ("Matrix with increasing numbers by 2.0:\n") ;
23 p r i n tmat (Z) ;
24

25 /* Stitch together four corners of new matrix */

26 p r i n t f ("Large stacked matrix:\n") ;
27 p r i n tmat ([X, Y ; Y, Z ;]) ;
28 }

Output Log
Identity matrix:
1.00 0.00 0.00
0.00 1.00 0.00

MiniMat Language Reference Manual

0.00 0.00 1.00
Matrix of 2’s:
2.00 2.00 2.00
2.00 2.00 2.00
2.00 2.00 2.00

Matrix with increasing numbers by 2.0:
1.00 3.00 5.00
7.00 9.00 11.00
13.00 15.00 17.00
Large stacked matrix:
1.00 0.00 0.00 2.00 2.00 2.00
0.00 1.00 0.00 2.00 2.00 2.00
0.00 0.00 1.00 2.00 2.00 2.00
2.00 2.00 2.00 1.00 3.00 5.00
2.00 2.00 2.00 7.00 9.00 11.00
2.00 2.00 2.00 13.00 15.00 17.00

3.2 Functions

This sample program illustrates more examples of building up programming abstractions
with the MiniMat language:

1. Define a new mathematical operator function (note that all standard matrix operators
are defined in this same way using functions written in MiniMat language itself) – the
division operator / for matrices.

2. Define a new linear algebraic function – to compute the inverse inv of a matrix argu-
ment.

3. Declare and use external functions – from the Lapack C API library.

4. More MiniMat matrix expressions: we set up the values of operands for a statistical
formula, to compute a linear regression with constant intercept.

5. Write a (one-line) statistical program in MiniMat – to identify outlier observations
when fitting a linear regression model.

There is no standard mathematical definition of the matrix division operator /, so we
shall provide our own by coding it up a function in the MiniMat language which shall be
incorporated into its math library file math.mm. We define the operator to return the least
square regression coefficients Y/X = β = (X ′X)−1X ′Y , so that with scalar operands for
example, the quotient β exactly satisfies Y = βX, though only approximately satisfies (but
with minimum squared error) Y ' βX with matrix operands. The regression formula re-
quires computing a matrix inverse, so we write such a MiniMat function, that uses specialized
routines from the external Lapack numerical library.

The final program to compute outlier observations from a linear regression model can be
specified in one line that aesthetically resembles an intuitive matrix equation.

Listing 2: MiniMat program to define and use functions

1 /* Sample program to fit linear regression model and display outliers */

2

Terence Lim - tl2735@columbia.edu 15

MiniMat Language Reference Manual

3 /* Use LAPACK external C API library */

4 con s t an t i n t LAPACK ROW MAJOR = 101 ;
5 e x t e r n a l i n t LAPACKE dgetrf (i n t M, i n t m, i n t n , f l o a tma t A, i n t lda , i n t v e c p i v o t) ;
6 e x t e r n a l i n t LAPACKE dgetri (i n t M, i n t m, f l o a tma t A, i n t lda , i n t v e c p i v o t) ;
7

8 /* Define matrix inverse function , with the help of LAPACK */

9 f l o a tma t i n v (f l o a tma t v) {
10 f l o a tma t A ;
11 i n t i n f o ;
12 i n t v e c p i v o t ;
13 A = matcopy (v) ;
14 p i v o t = vecnew (rows (A)) ;
15 i n f o = LAPACKE dgetrf (LAPACK ROW MAJOR, rows (A) , c o l s (A) , A, rows (A) , p i v o t) ;
16 i n f o = LAPACKE dgetri (LAPACK ROW MAJOR, rows (A) , A, rows (A) , p i v o t) ;
17 r e t u r n A ;
18 }
19

20 /* Define matrix division function , matdiv is bound to matrix / operator */

21 f l o a tma t matdiv (f l o a tma t y , f l o a tma t x) {
22 r e t u r n i n v (x ’ ∗ x) ∗ (x ’ ∗ y) ;
23 }
24

25 /* Main program: generate some values and find outliers */

26 i n t main () {
27 f l o a tma t Y ;
28 f l o a tma t X ;
29 f l o a tma t o u t l i e r s ;
30

31 /* arbitrarily create a column of Y values and two colums of X values */

32 Y = [2 . 0 ; 0 . 5 ; 1 . 5 ; 5 . 0 ; 7 . 0 ; 7 . 0 ;] ;
33 X = [1 . 0 , 2 . 0 ; 2 . 0 , 2 . 0 ; 3 . 0 , 3 . 0 ; 4 . 0 , 3 . 0 ; 5 . 0 , 5 . 0 ; 6 . 0 , 6 . 0 ;] ;
34

35 /* insert a column of ones at front of X, for regression intercept */

36 X = [matnew (rows (X) , 1) + [1 . 0 ;] , X ;] ;
37

38 /* find and display large negative outliers from regression model fit */

39 o u t l i e r s = Y[Y − X∗(Y/X) < [− 1 . 0 ;]] ;
40

41 p r i n tmat (o u t l i e r s) ;
42 }

Terence Lim - tl2735@columbia.edu 16

MiniMat Language Reference Manual

References

• Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 2006. Second Edition.

• Brian W. Kernighan, and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, 1998. Second Edition.

• Stephen A. Edwards. The MicroC Compiler. Columbia University COMS4115 lecture
slides.

Terence Lim - tl2735@columbia.edu 17

	Introduction
	Under the hood (Architecture)

	Language
	Lexical Conventions
	Tokens
	Comments
	Identifiers
	Keywords
	Literals

	Data types
	Small types
	Large types
	Other types
	Conversions

	Expressions
	Primary Expressions
	Function Calls
	Sizeof Operators
	Matrix and Vector Expressions
	Matrix and Vector References
	Transpose operator
	Unary operators
	Power Operator
	Multiplicative Operators
	Additive Operators
	Colon Expressions
	Relational Operators
	Logical Operators
	Assignment

	Declarations
	Type Specifiers
	Global Variables
	Global Constants
	Functions
	External functions

	Statements
	Expression statements
	Compound statements
	Selection
	Iteration

	Lexical Scope
	Library functions
	Standard library: stdlib.mm
	Math library: math.mm
	I/O library: stdio.mm

	Sample Programs
	Expressions
	Functions

