Scolkam
Final Report

Steve K. Cheruiyot Yekaterina Fomina Connor P. Hailey Léopold Mebazaa Megan O’Neill
(ske2143) (yf2222) (cph2117) (Im3037) (mo2638)
System Architect Language Guru System Architect Manager Tester

May 12, 2016

Contents

1 Introduction 3
2 Language Tutorial 4
2.1 Prerequisites L e e e e 4
2.2 Usinga Compiler L e 4
2.3 Data Manipulation L e 5
2.3.1 Declaration and Assignment 5

2.3.2 Control Flow e 5

3 Language Manual 7
3.1 Lexical Analysis o e 7
3.1.1 Linestructure. e e e e 7
3.1.2 Identifiers L e e e e e e e 8
3.1.3 Keywords o Lo e e 9

3.1.4 Literals e e e 9
3.1.5 Operators e e e e e 11
3.1.6 Delimiters oL e e 11
3.1.7 Scoping Rules e 11

3.2 Data Types o o o e e e e e 12
3.2.1 Typeinference L e 12
3.22 Nomne. e e 13
3.23 INb . .. e e 13
3.2.4 bool 13
3.25 float . . . oL e 13
326 tupleo e 13
327 ST oo e e e 13
3.2.8 Casting e e e 14

3.3 EXDPressions e e e e e e e 14
3.3.1 Literal Expressions Lo e 14
3.3.2 Operator Expressions o e e 14

3.4 Operators e e 17
3.4.1 Arithmetic operators e e e e e e 17
3.4.2 CompariSOnt i e e e e e e e 18
3.4.3 Assignment - = . ..o L e e e e e e 19
3.4.4 Identity oL e 19
3.4.5 Logical oL e 19
346 UNary o o e e e e e e e 20

3.5 Statements e e e e e 20
3.5.1 Simple Statements 20
3.5.2 Compound Statements Lo e 21

4 Project Plan

4.1 Planning Process L e
4.2 Specification Process
4.3 Development Processo
4.4 Testing Process o e e e e e
4.5 Programming Style L e e
4.6 Project Timeline L e
4.7 Roles and Responsibilities
4.8 Development Environment 0000
4.9 Project Log e
5 Architectural Design
5.1 Overall architecture e
5.2 Schema of the architecture
6 Test Plan

7 Lessons Learned

Qo

Appendix

8.0.1
8.0.2
8.0.3
8.0.4
8.0.5
8.0.6
8.0.7
8.0.8

References

scanner.mll L L e e e e e
parser.mly . . . L.

ast.ml .

clean ast.ml L
semant.ml L L e e e e e e e e
codegen.mlo e e e

testall.sh
Makefile

24
24
24
24
24
24
25
25
25
25

48
48
48

50

51

53
53
55
59
65
65
70
78
81

83

Chapter 1

Introduction

The Scolkam programming language is a general purpose programming language. Scolkam is a subset of the
Python programming language. It takes the most basic features of Python (arithmetic operations, control
flow, etc.). This language is designed to be a technical exercise rather than a solution to a domain-specific
problem.

The input language of Scolkam syntactically similar to the Python programming language. The output of
the translator is LLVM code. The language is designed to be easily readable for both novices and experienced
programmers alike. Syntactically, the language reads much like a sentence, similar to Python.

Chapter 2

Language Tutorial

2.1 Prerequisites

There are several software requirements for running the Scolkam language. Since the compiler is written
in Ocaml, and compiles down to LLVM, both Ocaml and LLVM must be installed on the target machine.
Additionally, Ocaml requires several different packages, which can be installed and managed via Opam, the
Ocaml package manager.

There are few incompatibilities, howvever. First off, depending on your insallation, the interpreter that
will need to be used is going to be rather 111 or 111i-3.7. To work, the minimum version of LLVM you
should be using is LLVM 3.7. If your version of 111 is older than 3.7, you should upgrade, as most programs
will not work. testall.sh uses the 11i-3.7 interpreter; if it does not work, you should modify the file
so that 111 is used instead. Second, we have not been able to use our interpreter on Mac OS, as there
apparently is a system-dependent bug in the LLVM interpreter on that platform. We did our testing on
Ubuntu Virtual Machines, akin to the one that Prof. Edwards distributed in class.

2.2 Using a Compiler

Type make inside the Scolkam directory to create a compiler. The compiler takes a Scolkam file with .sco
extension as input and outputs LLVM code.

Input: test-helloworld.sco

def None printIt():
print("Hello World")
end

printIt()

Type the following command to compile the above code:
./scolkam.native -c tests/test-hello_world.sco | 11i-3.7

The output will be as follows:
Hello World

2.3 Data Manipulation

2.3.1 Declaration and Assignment
Variables

To declare a variable, the name of the variable needs to be preceded by its type. There are 5 data types
implemented in Scolkam: str, int, double, tuple and None. At the declaration the variable needs to
be initialized as well. Once the variable is declared and initialized, it can be assigned values.

str b — nn
b — llhill

int a = 0
a =1

tuple ¢ = O
c =1(1,2,3)

Functions

The function is enclosed in a code block that starts with the keyword def and ends with the keyword end.
The name of the function needs to be preceded with the return type and followed by the list of arguments
enclosed in brackets separated by commas. Each argument name has to be preceded with its type. The
argument list can be empty if no arguments are required.

def float somefuncl(int a, float b):
return float(a + b)

end

def None somefunc2():
print ("somefunc2")

end

2.3.2 Control Flow

if statement

The if statement has if, elif, and else constructs. The keyword end completes a code block corre-
sponding to each construct as shown below.

int x = 0
if x == 0:
print("x = 0")
end
elif x == 1:
print("x = 1")
end
else
print("x <> 0 and x <> 1")
end

while loop

The syntax for while is similar to most programming languages. The keyword while is followed by the
condition for loop termination. The instructions in the body of the loop are succeeded by the keyword end.

int x = 10

while x != 0:

instructions go here
end

for loop

The following example illustrates the syntax of the for loop.

int x = 0

for(x = 1; x < 10; x = x + 1):
print (x)

end

Chapter 3

Language Manual

3.1 Lexical Analysis

A Scolkam program is read by a parser. The lexical analyzer generates a stream of tokens that is passed to
the parser. This chapter describes the rules the lexical analyzer follows to break a program into tokens.

3.1.1 Line structure

A Scolkam program is divided into a number of logical lines.

Logical lines

The end of a logical line is represented by the newline character. Statements cannot cross logical line bound-
aries except where the newline character is allowed by the syntax. For instance, the newline character is
allowed between statements in a compound statement, since a compound statement is considered a logical
line. This means that one can find logical lines embedded inside logical lines.

A logical line consists of one or more physical lines by following the implicit line joining rules. The end
keyword indicates the end of logical line as well. Statements within logical lines can be separated by a
semi-colon.

Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. Scolkam recognizes only
two line termination sequences (using ASCII): LF (linefeed - "\n') and CR LF (carriage return followed by
linefeed - "\r \n').

Comments

Single-line comments start with a hash character (#) that is not part of a string literal, and are terminated
by the end of a physical line. A single-line comment indicates the end of the logical line.

str tuple weekend = ("Saturday", "Sunday")
wish there is no homework on these days

Multi-line comments are achieved by inserting a multi-line string enclosed in a pair of three single quotes
(""" or in a pair of three double quotes (""").

7000

Ezpected output:

multi—line comments in single quotes

20

prints("multi—line comments in single quotes")

ninn

Ezpected output:

multi—line comments in double quotes
ninn

prints("multi—line comments in double quotes")

Blank lines

A logical line that contains only spaces, tabs, formfeeds and a comment, is ignored. No EOL token is
generated for this line.

Whitespace

The whitespace characters can be used interchangeably to separate tokens. Recognized whitespace characters
are:

e Space

HT (horizontal tab - "\t')

FF (form feed - "\f")

e CR (carriage return - "\r')

Indentation

Unlike Python, the beginning and the end of a function or a branch would not be defined by indentation.
The keyword end would indicate the end of the code-block. Therefore, inside a code-block, users can use
whatever indentation they want. The following example provides a valid output in Scolkam.

int bmi = 20
if bmi < 22:
prints("Your BMI is normal')
prints("No need to get on a diet")
end
Output:
Your BMI is normal
No need to get on a diet

20

3.1.2 Identifiers

The valid characters for identifiers are the uppercase and lowercase letters A through Z, the underscore and,
except for the first character, the digits 0 through 9. Uppercase and lowercase characters are distinct, so a
variable named var will be different from a variable named VAR. The length of identifiers is unlimited.

To find a valid identifier in Scolkam the following regular expression rule can be used:

[A-Za-z_] [A-Za-z_0-9] *

3.1.3 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as
ordinary identifiers.

and bool break
class continue def
else end False
for if import

is None not
null or return
self True while

We must also add the following identifiers:

file float int
object str tuple

Even though they are not keywords, they are, for all practical purposes, reserved identifiers, since they
identify the built-in types and objects.

We must also indicate the following identifier:
_ init_

Even though this is not a keyword, it is, for all practical purpose, a system-defined reserved identifier, as it
is a function name that can be used only as a constructor for objects.

3.1.4 Literals

In lexical analysis, literals of a built-in type are a token type with a grammar rule:

(literal) ::= (stringliteral)
| (integer)
| (floatnumber)
| (bool_literal)
| (none_literal)

Integer - int
Integer literals are described by the following lexical definitions:

(integer) = (decimalinteger) | (none_ literal)
(decimalinteger) ::= (nonzerodigit) (digit*) | 0+
(nonzerodigit) ::= 1...9
(digit) = 0...9

Float - float
Floating point literals are described by the following lexical definitions:

(floatnumber) ::= (pointfloat) | {exponentfloat) | {(none_literal)
(pointfloat) ::= ([intpart]) (fraction) | (intpart) .
(exponentfloat) ::= ({intpart) | (pointfloat)) {exponent)
(intpart) ::= (digit)+
(fraction) ::= . (digit)+
(exponent) = (e | E) [+ | -] {digit)+

Boolean - bool

There are two literal values of the bool type, defined according to the following rule:

(bool_literal) ::= True | False

String - str

String values of the st r type represent sequences of characters. The str type stores only ASCII characters.
Strings can be enclosed in matching single quotes (’) or double quotes ("). They can also be enclosed in
matching groups of three single or double quotes (these are generally referred to as triple-quoted strings in
Python). The backslash character is used to escape characters that otherwise have a special meaning, such
as newline, backslash itself, or the quote character.

The grammar rules for the str type appear below.

(stringliteral) ::= (shortstring) | (longstring) | (none_ literal)
(shortstring) ::= (""" (shortstringitem)® ("""} | (’"") (shortstringitem)* (’"’)
(longstring) == (""" (longstringitem)* (""" | (?"""7) (longstringitem)* (7""")
shortstringitem) := (shortstringchar) | (stringescapeseq
hortstringit hortstringch)
(longstringitem) := (longstringchar) | (stringescapeseq)
(shortstringchar) ::= (any ASCII character except "|" or newline or the quote)
(longstringchar) = (any ASCII character except <"|") >
(stringescapeseq) ::= ("\") (any ASCII character)

The recognized escape sequences are:

Escape Sequence Meaning Notes

\newline Backslash and newline ignored

A\ Backslash (\)

\! Single quote (")

\" Double quote (")

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)
Notes:

1. As in Standard C, up to three octal digits are accepted.

2. Unlike in Standard C, exactly two hex digits are required.

escape single—quote with backslash
prints("I am 6\’2 tall.")

escape double—quote with backslash

prints("Leonardo DiCaprio wins best actor Oscar for \"The Revenant\"")
200

Output :

I am 6°2 tall.

Leonardo DiCaprio wins best actor Oscar for "The Revenant"

20

10

Tuple

The elements of a tuple are objects. The objects have to be of the same type. Tuples of two or more items
are formed by comma-separated lists of expressions. A tuple of one item (singleton) can be constructed
by adding a comma after an expression. One expression by itself doesn’t create a tuple. Parentheses are
required.

int tuple tuplel
int tuple tuple2

(1,) # singleton tuple
(1,2) # tuple with multiple elements

None - None

None type is a special type that has only one literal value None. It can be used as a value for any type of
object (int, float, str, tuple).

(none_literal) ::= None

3.1.5 Operators

The following tokens serve as operators in the grammar:

+ - * / % == = < > <= >= is in and not or

3.1.6 Delimiters

The following tokens serve as delimiters in the grammar:

v =) e = e e T

3.1.7 Scoping Rules

Scolkam is statically scoped. The scope of a variable is set so that it can only be referenced from within the
block of code in which it is defined. In Scolkam, the scope of any name can be easily determined by looking
at the program.

Functions, variables, and classes have names. There cannot be multiple global variables defined with the
same name. An exception will be thrown as shown below.

str book = "Compilers"
prints (book)
#returns "Compilers”

str book = "100"
print (book)
throws an exception: exception Failure("Duplicate global book")

A name can be bound to values by:
e variable assignment: € = 1
e function argument: def None foo(int x)
e function definition: def None ()
e class definition: class x

e ‘for’ loop: for x in (1, 2, 3, 4)

11

The scope of a name is bound by program, or function, or class.

int age = 10
scope of ’age’ is the entire program

def None global():

print (age)

’age’ is mnot found in the enclosing function

it is found in the next outer enclosing space — program, so it prints 10
end

def None locall():
int age = 3
function’s own local wvariable is defined
print(age)
prints 3
end

def None local2(int age):

print (age)

prints the argument value passed, ’age’ is local to this function
end

global O
locall)
local2(15)

777 Qutput:
10

3

15

7000

Keywords def and class create new enclosing space.

3.2 Data Types

As in Python, all data is represented by an object. Every object has an identity, a type and a value. These
objects are immutable, so all three characteristics of the object do not change once the object has been
created. Here, type and class define the same thing.

So, all data is an object. There is, however, a difference between built-in data types, which are built
into the interpreter, and the other object types that are defined in the standard library or by the user. We
will describe the built-in data types in this section. '

3.2.1 Type inference

As much as we would like to stick as close as we can to Python’s syntax, Python is, in contrast to our
language, dynamically-typed. With LLVM, we cannot easily perform JIT compilation, so our language will
be statically-typed.

1We will not respect Python’s standard type hierarchy, as it is described here: https://docs.python.org/3/reference/
datamodel.htmlfobjects-values—and-types. In particular, in Python, the types int, float, etc. are subclasses of a
class called numbers.Number. This will not be the case here. We will assume that all the built-in data types are types on their
own.

12

https://docs.python.org/3/reference/datamodel.html#objects-values-and-types
https://docs.python.org/3/reference/datamodel.html#objects-values-and-types

int varnamel = 23

float varname2 = 4.2

str varname3 = "hello"

int tuple varname4 = (1, 2, 3)

3.2.2 None

Every program executed has a built-in object that can be accessed through the name None. It has a single
value, and signifies the absence of value. (Its truth value is false.)

3.2.3 int

These objects represent numbers between -2,147,483,648 and 2,147,483,647. These are the equivalent of all
binary numbers stored with 32 bits.

int var = 1

3.2.4 bool

These objects represent the truth values False and True. They are stored in memory as 0 and 1. They
can be treated as int in computations. For example, 1 + True returns 2.

bool var = False
Not "false"!

3.2.5 float

These objects represent numbers between 1le-37 and 1e37. They should be used to store floating point
numbers. These are stored with 64 bits in memory.

float var = 0.5

3.2.6 tuple

The items of a tuple are any Scolkam objects. The items in the tuple have to be of the same class.

We will allow high-level item assignment while preserving the immutability of the objects. This means that
operations that are written like tuple[index] = wvalue are authorized. We do that by replacing in the
parser phase this notation by an assignment that respects the immutability of the objects.

In practice, an instruction under the format:

example_tuple[i] = newval

will be transformed by the compiler into an instruction like this:

example_tuple = example_tuple[0:i] + newval + example_tuple[i+1:]

In other words, we simulate object mutability.

3.2.7 str

These objects represent a sequence of characters, where each character is encoded in ASCII format.

13

3.2.8 Casting

We will provide various casting operations. See section on Standard Library.

3.3 Expressions

This chapter explains the meaning of the elements of expressions in Scolkam. An expression is a code that
produces a result or a value. Evaluation rules for expressions described in this chapter are adapted from
Python implementation.

3.3.1 Literal Expressions

A literal expression evaluates to the value it represents. Here are some examples of literal expressions.

42

#evaluates to 42

"some text"

#evaluates to ’some text’

The above example shows the expression on the left and the value to which it evaluates on the right.

3.3.2 Operator Expressions
Binary

A binary expression is where a binary operator applied to two operand expressions. A binary operator takes
two arguments. Here are some examples of binary expressions.

6 x 7

#evaluates to 42

40 + 2

#evaluates to 42

"Hello, " + "World"
#evaluates to ’Hello, World’

The last example demonstrates that some expressions don’t evaluate to numbers. This particular expression
evaluates to the concatenation of two strings.

In general, binary expressions have the following form:

(binary _expr) ::= (expr) (bin_op) (expr)

When a binary expression is evaluated, first, the operands (left, and then right) are evaluated to a value
and replaced with their corresponding values, then bin_op (binary operator) is applied to the two resulting
values thus getting the value for the entire binary expression. The expression is replaced with the obtained
value.

Compound

When at least one of the operands is an expression itself, the expression is categorized as a compound ex-
pression. Here are some examples of compound expressions.

6 x 6 + 6 #evaluates to 42
32 + 2 + 2 #evaluates to 36
False and not True #evaluates to False

14

Parentheses can be used to override the defined Scolkam’s order of operations.
Note: A singleton tuple has to have a comma at the end, this allows us to distinguish between a singleton
tuple and an expression inside parentheses.

int tuple t = (2+1,20)
H#tuple

int a = (1+1)
Zerpression

int b = t[0]
print(a)
print (b)
Output:

2

3

20

Compound expressions enclosed in parentheses have the following form:
(compound_expr) ::= ((expr))

To evaluate a compound expression, the main operator has to be identified first by using the order of
operations rules. The main operator is the one that gets applied at the end. For example, in 6 * 6 + 6
the main operator is +, thus making this expression an addition expression. This addition expression gets
evaluated using the same rules as a binary expression.

Unary

A unary expression is where a unary operator applied to a single value. Here are some examples of unary
expressions:

—(6 * 7) #evaluates to —42
not True #evaluates to False

A unary expression has the following form:
(unary_expr) == (un_op) (expr)

Unary operators are — and not . The — operator negates a numerical value, the not operator negates a
boolean value.

To evaluate a unary expression, the operand expression needs to be evaluated prior to applying the unary
operator on it.
Variable Access

A variable access expression allows you to use the value of a variable you have assigned. Here are some
examples of variable access expressions:

int result = 42
result #evaluates to 42
result — 42 #evaluates to 0

A variable access expression has the following form:

(var_expr) ::= (var_expr)

15

To evaluate a variable access expression, the bindings are searched for a binding from var_expr to a value. If
a binding is found, then the variable access expressions is replaced with the value found. If no such binding
is found, then an error is raised.

Tuple Constructor

A constructor creates a new tuple. Here is an example of a tuple constructor:

int tuple = (40, 42) #a tuple with elements 40 and 42

A tuple constructor has the following form:
(tuple_construct) = ((expr), (expr), ..., (expr))

Tuples are evaluated from left to right. Fach expression expr in the comma-separated list is evaluated to a
value which replaces that expression. The values for all expressions in the tuple replace the tuple constructor
expression preserving the order. Duplicates are not removed. Once the tuple is constructed, it can only be
modified with high-level assignment described in Section 3.6.

Tuple Element Access

A tuple is a sequence. A sequence stores elements in a fixed order and gives each element a unique index.
An element in a tuple can be accessed by using its unique index. Here is an example of a tuple element
access expression:

int tuple tp = (5, 42, 7)
int a = tp[1]

print (a)

returns 42 (2nd element)

A tuple element access expression has the following form:
(tuple_access) ::= (expr) [(index_ expr)]

To evaluate a tuple element access expression to a value, the expressions ezpr are evaluated to a value followed
by the results of the evaluation of index expr. If ezpr evaluates to something other than a sequence, then
an error is raised. If index expr does not evaluate to an integer on the interval [-n, n - 1/(where n is the
length of the tuple), then an error is raised. If index expr is negative, index expr value is replaced with
the result of len(expr) - [index expr/. Accessing index - 1 is equivalent to accessing the last element in the
sequence. The tuple access expression is replaced with the value in the sequence at that index. The first
value in the sequence is located at index 0.

Function Call

A function call expression executes a function as a part of a larger expression (for example, a variable
assignment). Here is an example of a function call as part of a variable assignment:

def int seed():
return 1
end

int a = 0
a = seed()
print(a)

#returns 1

A function call expression has the following form:

(func_expr) ::= (func_name)[{(param_expr), ..., (param_ expr)]

16

3.4 Operators

The operators only work between two operands of the same type. For instance, 3 + 3 is possible, but 3
+ 3.0 is not. In order to make this operation possible, a number of casting operations int (), float (),
str (), and bool () are available (see Standard Library section.) For logical operators, only bool objects
are accepted.

3.4.1 Arithmetic operators

Arithmetic operators return the result of an arithmetic operation performed on a couple of operands. The
type of their result is the same as the type of both operands.

Addition - +

The + performs an addition with both operands.

3.0 + 2.1
5.1

Subtraction - -

The — performs a subtraction with both operands.

3.0 — 2.1
4 0.9

Multiplication - *

The » performs a multiplication of both operands.

3.0 + 2.1
6.3

Division - *

The / performs a division between both operands. Note that the division can be performed only between
two operands of the same type, and that the return type is the same as the types of the operands.

3.0 / 2.1
4 1./285714286

2
7

w
~ N~

Modulus - %

The % performs a modulus between both operands. Note that the division can be performed only between
two operands of the same type, and that the return type is the same as the types of the operands.

3.0 % 2.1 # 0.8999999999999999
3% 2 # 1

17

3.4.2 Comparison

These operators compare values that are bound to expressions or identifiers. These operators fetch the values
of these expressions or identifiers, and then put them on a scale to compare them. There are two types of
expression: equality operations, that check that two values are the same, and pure comparison operations,
that check that a value is lesser or greater than an other.

The equality and inequality operators work with all types. For custom-made objects, the equality is de-
termined by checking the equality of all the attributes of the both objects. (Once again, the two objects
that are compared must be of the same class.) The rest of the comparison operators do not work with all
types, but only with int, float and bool. List types such as str and tuple are not compared together
on a scale, but you can perform such an operation handy with a for loop. (See next section for more.)

Equality - ==

The equality operators checks the value equality of two expressions. If the values of two operands are equal,
then the expression returns True.

3 == # False

Inequality - !'=

The equality operators checks the value inequality of two expressions. If the values of two operands are
equal, then the expression returns False.

"Gold" != "GOLD" # True

Strictly less than - <

The < operator checks if the value of left operand is less than the value of right operand. If it is, then the
expression returns True.

4.1 < 4.0 # False

Strictly greater than - >

The > operator checks the value of left operand is greater than the value of right operand. If it is, then the
expression returns True.

"Gold" > "GOLD" # Illegal operation
True > False # True (since True is 1 and False is 0.)

Less than - <=

The <= operator checks the value of left operand is less than the value of right operand. If it is, or if the
two operands have the same value, then the expression returns True.

True <= True # True
int(4.0) <= int(4.6) # True

18

Greater than - >=

The >= operator checks the value of left operand is greater than the value of right operand. If it is, or if the
two operands have the same value, then the expression returns True.

3 >= 3 # True
int(4.0) >= int(4.6) # False

3.4.3 Assignment - =

The assignment operator assigns values from right side operands to left side operand.

c=a+b # assigns the value of a + b into ¢

3.4.4 Identity

Identity operators check the equality of two objects by comparing the memory locations. They are therefore
different from equality operators.

is

The is operator evaluates to True if the variables on either side of the operator point to the same object
and False otherwise.

int varl = 3

int var2 = varl

varl is var2 # True

"Hello" is "Hello" # Probably False, will depend on the compiler
implementation

is not

The is not operator evaluates to False if the variables on either side of the operator point to the same
object and True otherwise.

3.4.5 Logical

Logical operators only work with bool objects.

Conjunction - and

Equivalent to a conjunction binary operator. If both the operands are True then condition becomes True.

True and False # False

Disjunction - or

Equivalent to a disjunction binary operator. If any of the two operands are not False then condition
becomes True.

bool (2) or False # True

19

3.4.6 Unary

Unary operators are operators that do not apply to two, but one operand. We have two operators: —(as in
minus) and not. The first one works on a int or a f£loat. The second one works on a bool.

Minus - -

The minus operators returns the numerical opposite of the operand.

— (3 o+ 4) 47

Negation - not

Equivalent to a negation binary operator. Used to reverse the logical state of its operand.

not False # True

3.5 Statements

Scolkam distinguishes two types of statements: simple statements and compound statements. Compound
statements are different from the simple statements that they can comprise simple statements inside them-
selves. We will look at both versions separately.

3.5.1 Simple Statements

A simple statement is comprised withing a single logical line. Python-inspired Scolkam’s grammar for simple
statement is:

(simple_stmt) ::= (expression_ stmt)
| (assignment_ stmt)
| (augmented_ assignment_ stmt)
| (return_ stmit)
| (break_ stmt)
| (continue_ stmt)
| (import_stmt)

Each line represents one type of simple statement that we will look at separately.

Expression Statements

Expression statements in Python are used mostly in interactive mode, which we will not support here. When
not used in interactive mode, expression statements are usually used to call a procedure (which is a function
that returns nothing or None.).

function_call)

Assignment Statements

Expressions statements are slightly different from assignment statements, that are "used to bind (re)bind
names to values and to modify attributes or items of mutable objects". In contrast to Python, only one
name can be bound at a time.

varl, var2 = returnstwovalues() # returns an error in Scolkam
int tuple varl = (3, 4)
possible in Scolkam, wvarl will be a tuple

20

The data type is to be mentioned during assignment statements.

int varl = 2 # varl is an int
float varl = 2.0 # varl is a float
int var2 = 3.0 # Parser error

Return Statements

Return statements may occur only in a function definition. The expression is evaluated before it is returned.
If no expression is present, then "None" is returned.

(return_ stmt) ::= return [(expression)]

In a function that has a bool return type
return False

Break Statements

Break statements may occur only in a loop. It terminates the execution of the instructions of the nearest
enclosing loop.

(break_stmt) ::= break

Continue Statements

Continue statements may occur only in a loop. It continues the execution of the instructions of the nearest
enclosing loop with the next cycle.

{continue_stmt) ::= continue [(ezpression)]

3.5.2 Compound Statements

The if statement

(if stmt) == 1if (expression) : (statements) (end elif (expression) : (statements))* [end else :
(statements)] end

The if statement is used to execute different instructions based on conditions.
The structure here is similar to any generic programming language, with if, else if, and else constructs
(although the syntax of else if is here elif).

str string_number =
int var = 4

if var == 4:
string_number = "four"
elif var == 6:
string_number = "six"
else:
string_number = "unknown (but definitely not four or six)"
end

prints(string_number)

21

Loops: while, for

It is worth nothing that break and continue statements can apply in these statements. (See earlier to
see the effects of these statements.)

The while statement

(while _stmt) := while (expression) : (statements) end

The while statements is used for repeated execution as an expression is true.
The expression is evaluated once. If it is true, then the statements inside the loop are executed until the
expression is not true anymore.

int a = 40

while (a < 43):
print(a)
a=a+1

end

The for statement
(for_stmt) := for (target_list) in (expression_list) : (statements) end

The for statement is used to iterate over the elements of a sequence (a string, a tuple). For every element
in this sequence, the statements are evaluated once (except for a break instruction).
The scope of the variables in target_1list is the loop. Let us look at this example:

def int testIt():
int i =0
for (i = 0; 1 < 5; i=1 + 1):
print (i)
end
end

print (42)
testIt()

In this example, the loop runs 4 times, and not another number of times. The scope of 7 is just the loop.
The loop makes assignments to the variable ¢ in the target list (in the above example the target list is (1, 2,
3, 4)). These assignments overwrite all previous assignments to the variable .

Function definitions

(funcdef) ::= def [(type)] (funcname) ([(parameter list)]): (statements) end

(parameter _list) ::= ((parameter))*
| (parameter) [,])
(parameter) ::= (type) (name)

Here, <type> means the type that the object is. As, we explained earlier, every parameter must have an
explicit type. Therefore, the type of the arguments must be explicit in the function definition. Functions can
be overloaded, in the sense that there can be multiple functions with the same name, but different argument
and return types. Functions do not accept optional arguments.

A function definition, which is an executable statement, defines a function object. Using the name defined
in that function definition calls the execution of that function.

return statements are generally expect in a function, and terminate them. Here is an example of a function:

22

def float somefunc(float a,
return float(a + b)
end

float b):

23

Chapter 4

Project Plan

4.1 Planning Process

Our team used an iterative approach to planning. For the first couple of weeks our group met once a week to
brainstorm ideas for a programming language. Once we agreed on the idea, we started meeting twice a week.
During our meetings we would discuss goals and assign action items for the following week. The selection of
goals and action items was driven by the project milestone schedule and the stages of the translator. Various
features were planned and either adapted, added, or dropped depending upon time constraints, and ability
to implement.

4.2 Specification Process

At first, we needed to ensure that all members of the team are familiar with Python and have some un-
derstanding of LLVM IR . This phase was necessary for collecting input from all team members on our
language design. Once the list of language features was defined, we were ready to document the details of
these features, as well as nuances of their implementation. The first draft of the language reference manual
was written in parallel with the scanner and parser development. Close collaboration during this initial stage
allowed us to revise the language specification as we realized the level of complexity for implementing certain
language features.

4.3 Development Process
The compiler structure dictated the stages of the development process. The first components to develop

were the scanner and parser, followed by the semantic analyzer. The code generation was the final stage of
the development process. All components were tested during the development process.

4.4 Testing Process
Several tests were originally built based off of the Micro-C compiler testing suite. Following those, numerous
other tests were developed based off of the features detailed in the Language Reference Manual. Though a

test-first design was implemented, test driven development was not used. Please see Section 6, "Test Plan",
for further details.

4.5 Programming Style

Although the language is based upon Python, differences do exist. When defining both classes and functions,
an "end" keyword is used to designate the end of a class or function. In definitions, no curly brackets are

24

used, and arguments must be explicitly listed with their return types. Additionally, variables must first be
declared with their associated return type, and then assigned a value (please see the Language Tutorial for
more information).

4.6 Project Timeline

February 10th Language Proposal submitted
February 19th Revised Language Proposal submitted

March 7th Language Reference Manual submitted

March 22nd Scanner development completed

April 1st Parser and AST development completed

April 19th "Hello World’ demo

April 28th Semantic Analyzer completed

May 11th Code Generator completed

May 11th Project Presentation and Final Report submission

4.7 Roles and Responsibilities
Initially assigned roles and responsibilities are summarized below.

Connor P. Hailey System Architect
Léopold Mebazaa Manager

Megan O’Neill Tester

Steve K. Cheruiyot System Architect

Yekaterina Fomina Language Guru

Even though the main roles stayed the same throughout the project, responsibilities of team members evolved
during multiple stages of the project. As needed team members took additional responsibilities to meet the
milestone schedule and progress the project further.

Connor P. Hailey Scanner, Parser, Code generator

Léopold Mebazaa Scanner, Parser, Code generator, LRM

Megan O’Neill Test case creation, Testing Script, Final Report
Steve K. Cheruiyot Scanner, Parser, AST, Code generator
Yekaterina Fomina ~LRM, Scanner, Final Report, Testing Script

4.8 Development Environment

Our programming enviornment was pretty unexceptional. The only notable feature is that we used Vagrant
Virtual Machines with Ubuntu distributions in order to have a similar envionrment.

4.9 Project Log

25

commit 4aa7fd18257008c815c66253623e4fdeca3l7d8c
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu May 12 00:02:50 2016 -0400

You can pass tuples as arguments

commit dfabl3bl1b33d98e63ec6£519cd31f27ed35bbes
Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Wed May 11 22:22:22 2016 -0400

lessons learnt

commit a8cf5d26adebceal87dd7804274e771813367ae8
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed May 11 21:52:24 2016 -0400

lesson learned

commit 09effb5add45bec61971lac55dafb9041c2e9fa29
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed May 11 21:52:15 2016 -0400

lesson learned

commit a6dflbd46d6ab80157b890388e5ede766786a265
Merge: £102b89 9d60c47

Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 21:30:24 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam

commit f£102b8911780afec584699c804986e4fac7c8938
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 21:29:13 2016 -0400

suppressing warnings
commit 9d60c47f46abb9c6bl42b719dd51aea9374508ad
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 21:09:09 2016 -0400

updates to Final Report
commit 63211ca7a413519f64a5eel3e3cd94966e95e819
Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Wed May 11 20:37:35 2016 -0400

implementing assignment to tuple elements e.g b[l] = 23
commit 54f128£9cf7830ea0d834d170d015b975d30e6£8
Author: KathyFomin <kathy.fomin@gmail.com>

Date: Wed May 11 17:24:24 2016 —-0400

moveTower example

26

commit b2ad41375edl1f4ed31e9d396ad20cae67£5c9£870
Merge: c3acfc0 l0a8acc

Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 17:04:09 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam

commit c¢3acfc058094934103b78ec76fe0601ledld33ale
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 17:03:36 2016 -0400

arithmetic fix

commit 1l0a8accfab62c886f7f22be2e2f88e8ffb59%9a8b0
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 16:59:47 2016 -0400

standard library beginning

commit 5b0ca%9a8e7120313ad37614c67b5edlal3dac3b53
Merge: bd3dza7 £722d3d

Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Wed May 11 16:46:29 2016 -0400

Merge branch ’'master’ of https://github.com/lemeb/scolkam

commit bd3d2a7e0f1d19f33bef2cbdfaebb54878213a3e
Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Wed May 11 16:46:04 2016 -0400

string literals concatenation

commit £722d3db3285dc252£868df0fc8d0£923adf32b3
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 16:45:50 2016 -0400

moveTower, print tuple

commit 2899dbla2925687bece847d8£42bd95£3b85bEf11l
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 15:14:23 2016 -0400

testing toint function
commit ca3afc6fal7b26974405d7865c3581b9%ddc72ee6
Merge: 39200c7 6b68ad3
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed May 11 16:36:50 2016 -0400
Merge branch ’'master’ of https://github.com/lemeb/scolkam
commit 39200c7d8abl%e867e64e002693d2558a49037£fb

Author: Connor Hailey <connorhailey@gmail.com>

27

Date: Wed May 11 16:36:40 2016 -0400
str concat

commit ldabd8b8c8b52ebe7bfcbb8bl4f655a96a5c08fa
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed May 11 16:35:46 2016 -0400

str concat

commit 6b68ad33f5b525ab0e6581796bea791e3270d086
Merge: 000e7f3 7d6alls8

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Wed May 11 16:10:44 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam

commit 000e7£f3c0b7c46935c3%ae2bf54bb58e15c63b33
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Wed May 11 16:10:39 2016 -0400

Break and continue solved

commit 7d6all87ffc6980e81173e51ead43c01cbb09690a
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 15:03:06 2016 -0400

more testing...
commit 19ee603f68cd264b342420fe62cbee5715901b9%0
Merge: 5027cd8 £4£95d6

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Wed May 11 14:45:28 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam
commit 5027cd8d73b84ffad42d9%dec0b8093d7ffa3252d3
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Wed May 11 14:45:20 2016 -0400

toint converts to integer
commit £4£95d63c30c66£13a654eb5a412858b0£28b849
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 14:42:56 2016 -0400

more testing stuff
commit e3521b7£2395882e34d8817£9679935aa8d44cec
Author: Leopold Mebazaa <1m3037@columbia.edu>

Date: Wed May 11 14:27:24 2016 -0400

Tuples work

28

commit 06d12977ded41clc07061c934834d0£673b90fbad
Merge: 558e9d2 206e4f3

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Wed May 11 13:35:39 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam
"Merge"

commit 558e9d21al135al10055f£fc08£2343b4158b71004e
Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Wed May 11 13:35:26 2016 -0400

TUple works

commit 206e4£3ebb064£97793061£03d%0cb441e1905b8
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 12:39:33 2016 -0400

testing fibonacci

commit 3a65f44d33c5ab00162bd4eab6a7£780292d67831
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 12:26:33 2016 -0400

more testing of tuple access

commit a29b822c064d65843158feaeab3500281f74c761
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 12:13:25 2016 -0400

testing tuple declaration and access

commit 06435c6a323acd002936fe67a8d77c5af055465e
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 12:02:18 2016 -0400

adding floating pt operations
commit b0d8ele7b3a45c81lal03cfe5d%ab75dcd685785a7
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 11:53:48 2016 -0400

testing print int, for loop
commit leS5acec236ca5903059¢c2c282688747ec768eded
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Wed May 11 11:40:30 2016 -0400

testing scope, float addition and print

commit £859ce7dcbf4de66dc44db53b449464ccal3411d
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Wed May 11 10:45:29 2016 -0400

29

Fixed element bug

commit ed2752c535103159e3b63eel871df2604a28c42c
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Wed May 11 10:41:28 2016 -0400

stuff

commit 5d12116£73db3e791d2f8e8fab6167abe81538a9
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Wed May 11 03:06:01 2016 -0400

implementing tuples e.g str tuple t = ("I", "am", "a", "string", "tuple")

commit 51b515012c56f4e4a57ae8092135calcebf57703
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Tue May 10 17:15:09 2016 -0400

Added Test Plan, Lang Tutorial and Project Plan sections

commit 4735075226e6dfdc38e98e8cba209%ee5022dd0e5
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Mon May 9 14:27:46 2016 -0400

updates to LRM

commit 980a5e5697428fde%ac40e79056d56b7£1d77849
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Mon May 9 14:21:24 2016 -0400

adding Final Report doc

commit 52e2d35e832d70££f23a7653e75e9a628b6ab352d
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sun May 8 23:01:37 2016 -0400

House cleaning
commit ccb644356ac63bda748d6fae3b458bd787501107
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Sat May 7 19:37:32 2016 -0400

5/7 test results
commit 392146e7flebc9caccbbl2ac7eb31f0dflel2lde
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Sat May 7 19:34:40 2016 -0400

test scripts cleanup
commit a2a9%94ec6585b204a4b9%e707c2c4ecd49844af2994

Author: KathyFomin <kathy.fomin@gmail.com>
Date: Sat May 7 18:30:42 2016 -0400

30

restoring creation of .11 files

commit 56b14e28950ab2561e802832f6c5aecad3eab95db
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Sat May 7 17:59:01 2016 -0400

Better AST printing

commit £54a6195f22ea5b69089e6355d736bd85b26£d0d
Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Sat May 7 17:34:31 2016 -0400

Fixed bug stemming from previous bug fix (arg problem)

commit 93132bb3a2a65c7abl69230165cbe6754c5504ea
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sat May 7 17:26:06 2016 -0400

Fixed a bug that made something between parentheses considered a tuple

commit 88945e8b52b655ea80b55056cf9a284e2badc036
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sat May 7 17:12:32 2016 -0400

Bug fixes

commit 5a07a0fd878d810ead45cf8c84cec04ed45835cd6
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sat May 7 16:27:55 2016 -0400

Esthetic fixes

commit 7a5b990433952f90d5eb46elebf04433fedc5692
Merge: 72f2ae4 808bebd

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sat May 7 15:58:34 2016 -0400

Added Declaration among statements?2

commit 72f2ae4689af4d5fd85f2bb4£f4610656934440c8
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Sat May 7 15:57:41 2016 -0400

Added Declaration among statements
commit 808bebd087b8dbad4lc398cd504b8c547dd50b977
Author: Connor Hailey <connorhailey@gmail.com>
Date: Sat May 7 12:06:22 2016 -0400
can access tuple elements. changed to int instead of expr list
commit ad9d20aeb81£3c0£8706104d92f49%aa7£3240412

Merge: 3d2e034 c3ce20a
Author: Steve Cheruiyot <skc2l43@columbia.edu>

31

Date: Sat May 7 06:49:41 2016 -0400
implementing variable assignment in declarations

commit 3d2e03431621bbe702d5b4a3982469£1322a178d
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Sat May 7 06:43:51 2016 -0400

implementing variable assignment in declarations

commit c3ce20aabefc38d2cdd3d5501bd7b4be590b34cl2
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sat May 7 00:37:50 2016 -0400

Merge issues fixed

commit bl1636e3b73757039ee666cb0d45b57d685d02b8e
Merge: 94f9fe2 28959a7

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sat May 7 00:22:15 2016 -0400

Merge complete
commit 94f9fe28517bce7dea63fdf608af2d57£fc702a8e
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Fri May 6 23:39:16 2016 -0400

Elifs handled correctly - 2
commit 71ald8990d1a7843b5f9ff2£90076139db6c2300
Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Fri May 6 23:38:34 2016 -0400

Elifs handled correctly
commit 28959a7ee28b87£81cl6ff1851469%ea2bad6068f
Author: Connor Hailey <connorhailey@gmail.com>
Date: Fri May 6 19:24:39 2016 -0400

access, only for Oth element at this time. will make it dynamic tmrrw
commit 2c2abl09e£d20d670c1830£d265733b52756ad%a
Author: Connor Hailey <connorhailey@gmail.com>
Date: Fri May 6 18:47:17 2016 -0400

created tuples. now to access them
commit dfc2272cad6£fa05805629£57709327£575¢c921£5
Author: Connor Hailey <connorhailey@gmail.com>
Date: Fri May 6 18:47:01 2016 -0400

created tuples successfully. now for accessing them

commit 84cl7d5ed92153d40eaf28efc78d163b4b955db3

32

Author: KathyFomin <kathy.fomin@gmail.com>
Date: Fri May 6 18:05:32 2016 -0400

bug fixes

commit 7f4033baf9fda693d9debcd5620b6e7791cabdaa
Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Fri May 6 16:49:21 2016 -0400

additions to semantic

commit 00el32eed710310acaebel6d3c6d5ade87287128
Merge: 12878a9 fafleed

Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Thu Apr 28 16:22:17 2016 -0400

Merge branch 'master’ of https://github.com/lemeb/scolkam

commit 12878a9bald425b66a82ec4187929e09fe78£fb8b0
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Thu Apr 28 16:20:18 2016 -0400

improving semantic analyzer
commit faflee408dc8386eca3663fale3d945e8c9b855b
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Wed Apr 27 12:23:26 2016 -0400

move avl tree file into bst file

commit 84994eef(e8c681l56e7eedd9%elab622c9981d9%e67
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Wed Apr 27 10:50:51 2016 -0400

update bst to conform to LRM
commit d2c24dd9%eba6225a19488081c631049e09d915a7
Author: Steve Cheruiyot <skc2l43@columbia.edu>
Date: Mon Apr 25 05:35:58 2016 -0400

adding elif and object type
commit ad73a55e81982abbccc88eb75610aad27483d0£0
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Fri Apr 22 16:15:32 2016 -0400

updated readme
commit 36cdfbeafdf745cd5a6790falc8dbb89d6453bb7
Author: Megan 0’'Neill <mo2638@columbia.edu>

Date: Fri Apr 22 16:11:06 2016 -0400

testing doc update

33

commit 378ed87e8a3a7383d7f£f£0a5536d02e0165eab22
Merge: 5f9cefa cfbed83

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Tue Apr 19 11:01:36 2016 -0400

something?2

commit 5f9cefae617d3799804eb60324a66clabef3aale
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Tue Apr 19 10:56:59 2016 -0400

something

commit cfbed83d01£09743dd30£70f9%adc8176eb553deb
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Sun Apr 17 15:14:03 2016 -0400

test results along with additional tests

commit c8ee58£f060£fe8a98d56d222b8fb0413c£f5107a93
Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Mon Apr 11 19:13:55 2016 -0400

fixing reversed stmtns and improving semantic analyzer

commit a0378c26b360b4653belaf6577c63e77£17a£099
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Sun Apr 10 12:15:05 2016 -0400

update some test syntax

commit 27b993a0702013dd393376e7e6£1c7£0773£02ec
Merge: 9be7af7 2449185

Author: Megan 0’Neill <mo2638@columbia.edu>
Date: Sun Apr 10 11:32:58 2016 -0400

Merge branch ’'tests’

Conflicts:
Makefile

commit 9be7af7bef564ecl9e78e883854bc33£8c3£8£46
Merge: ed48c26a 4827e71
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sat Apr 9 15:21:45 2016 -0400
Merge branch ’'master’ of https://github.com/lemeb/scolkam
commit €48c26a218611524ce06b0ec949b679877£83aeb
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sat Apr 9 15:21:28 2016 -0400

HelloWorld_README

34

commit 191f0f4d8145fb5b7d44ea704db540c929bd7el3
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu Apr 7 19:49:41 2016 -0400

Added REPL instructions

commit 4827e71e02554f12db456be0b09750f6bbf2f7af
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Thu Apr 7 19:42:14 2016 -0400

fixing multiline comments and removing import stmts

commit £4ca705dd8d2c0821983170178849094b5a54a0a
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Thu Apr 7 19:31:59 2016 -0400

Added todolist

commit 128d7bc6fb506ae790563cf0£23£789db2c1592¢c
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Thu Apr 7 19:28:16 2016 -0400

Added instructions for testing pipelines

commit c0366bc4c28d4e981lac933belb457d4ba88£4345
Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Thu Apr 7 19:04:01 2016 -0400

Add clean_ast

commit 3£f5a49b81bdb31c57£5152a701b3e00c2010c863
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu Apr 7 18:01:14 2016 -0400

Fixed the merge

commit 704£8774beb0980b3c0b8746de86ad43e0235c6b
Merge: 337f0a5 0cf3875

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu Apr 7 17:56:10 2016 -0400

Merge branch ’debug_steve’

commit 0cf3875b004115fb9cd4943d5aa0911e72£9e839
Merge: 4356228 337f0a5

Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Thu Apr 7 17:55:54 2016 -0400

Merge with master
commit 337f0a5466d64508f17ce49p10bbl190ebd7df395
Merge: 95f1642 d72dc9f

Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Thu Apr 7 17:31:12 2016 -0400

35

Merge branch "helloworld’

commit d72dc9fa8678£f4dc400584eaf55e355ed4414£cO
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu Apr 7 17:30:45 2016 -0400

Resolve merge conflict 2

commit 95f16424cd516b51bae91c9£fd8076d28c1a%949£9
Merge: 5925cfb dll5c7e

Author: Leopold Mebazaa <lemebfr@gmail.com>
Date: Thu Apr 7 17:29:06 2016 -0400

Merge pull request #8 from lemeb/helloworld
Helloworld becomes the stable infra

commit dl115c7ee0882bcb039022463efc269a42d42903c
Merge: dc906el 5925cfb

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Thu Apr 7 17:28:04 2016 -0400

Resolve merge conflict
commit dc906el105b6b830e6bc39ead4bl4119b5£f7d5c5c

Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Wed Apr 6 18:51:00 2016 -0400

It works! Also, you can put as many blank lines as you want!

"t need to write a main function!

commit 97105faebf697£54dfe5eb99£8731605232867c0
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Wed Apr 6 15:04:14 2016 -0400

Better indentation
commit 969c45bdl1fd7£f0b720d384alc032f2acla2falsb
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed Apr 6 09:11:35 2016 -0400

hello world works
commit 5fb60fecfall2baafcc650d3323232c4c7dc3619
Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed Apr 6 00:04:14 2016 -0400

hello world with 11 working
commit 6b08cddfd7d9510377afc7cb7¢c9bc785£ff75f14c

Author: Connor Hailey <connorhailey@gmail.com>
Date: Wed Apr 6 00:03:54 2016 -0400

36

Also,

you don

hello world without 11 working

commit 4356228£8507463da3fc56£4715db2bcfddf1l0e8
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Wed Apr 6 03:36:47 2016 +0000

Beginning
commit ca411a91e113f52d73636cd40beale37c094860e

Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Tue Apr 5 22:39:34 2016 -0400

working codegen

commit 82cel8af9%940bebeadfl1245f1£f050bad4815a8e0b
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Tue Apr 5 21:58:23 2016 -0400

debugging stuff
commit 5925cfbe33fb01£fc02145fdc2974e7£826307d83
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Wed Apr 6 01:55:17 2016 +0000

Modified the scolkam.ml file to check if it works (it doesn’t)
commit a0fd58d6ee8bacb93ea7447fcb29fbeffb6950b6
Author: Connor Hailey <connorhailey@gmail.com>
Date: Tue Apr 5 19:48:47 2016 -0400

attempt at hello
commit 484eaa7d50489d8e95a35f7d0d7abb54c90a73b2
Author: KathyFomin <kathy.fomin@gmail.com>
Date: Mon Apr 4 18:41:49 2016 -0400

minor changes to comply with LRM

specifying type for variables, making bool values start with a capital
letter, replacing ©* (power) symbol with % (multiplication)

commit 7d96aclaf98d2d95a3df801d£8006d301e238815
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Apr 3 18:53:13 2016 -0400

adding semantic analyzer version 1
commit 6laecfebd454abed85d8b03674ab77712f1cd91f
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sun Apr 3 20:49:14 2016 +0000

Code cleaning so that codegen.ml works

commit eb75a4d2fae873fbca79%9a94eab5bal0385e6d4377e

37

Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sun Apr 3 20:22:28 2016 +0000

Added *.err in the make clean

commit e5fde5£f47437b14d47930d6cbecdf20debc28360
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Apr 3 13:36:13 2016 -0400

fixing class issue in parser

commit 24491857bd87eba3213d32937ba628af3d94a810
Author: Megan 0O’'Neill <mo2638@columbia.edu>
Date: Sun Apr 3 13:27:33 2016 -0400

tuple tests

commit 048ce83b0d16d3blc967bb974bb4868801ca8cde
Merge: 0b84cd0 c5bdb3e

Author: Oneill38 <megan.oneill38@gmail.com>
Date: Sun Apr 3 12:40:41 2016 -0400

Merge pull request #7 from lemeb/tests
Tests

commit cb5bdb3eb0563cc3014bbbbalfl8a3c559a827a75
Merge: 456flad4d 0b84cdO

Author: Megan 0’'Neill <mo2638@columbia.edu>
Date: Sun Apr 3 12:37:53 2016 -0400

Merge branch ’'master’ into tests

Conflicts:
tests/test-misc_test.sco

commit 0b84cd091b338babfl7b2e67efa7db25ecf10952
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>
Date: Sat Apr 2 00:17:42 2016 -0400

addressing TA’s comments
commit dddffec69ac76379dc61283031d75198b35649d3
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>
Date: Fri Apr 1 23:48:46 2016 -0400
adding parentheses for print and type for class declaration
commit a9c89766b06052920f2221af5e6dccd4ec89e4ddbd
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>

Date: Fri Apr 1 22:11:55 2016 -0400

adding parentheses for print and type for tuple declaration

38

commit b76867faa44e68092144b0a0387afebbed7833cl
Author: Kathy Fomin <kathy@kathys-air.nirvanasoft.com>
Date: Fri Apr 1 16:47:52 2016 -0400

added parentheses for print
all functions need to be surrounded with parentheses

commit 456f1a427cc95667086d38ebdl46e47867el21a2
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Fri Apr 1 16:06:50 2016 -0400

rename new tests, add to makefile

commit 2b40db209ccf076£d19031blb£f327a97e£f£85£fc0
Merge: 914d59e 91al743

Author: Megan O’Neill <mo2638@columbia.edu>
Date: Fri Apr 1 15:39:13 2016 -0400

Merge branch ’'token_check’ into tests

commit 91al7437b75£4987£80ef2fa391e8707bc876734
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Fri Apr 1 15:38:42 2016 -0400

updated test syntax

commit 6e416de70cb35adaal6c260098752bb9c18b904d
Author: Megan 0’'Neill <mo2638@columbia.edu>
Date: Fri Apr 1 15:37:27 2016 -0400

add shell script to test parser/scanner
commit ale66fb9bd85ee696alebf7378ed38£9d1lfbedch
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Fri Apr 1 01:59:06 2016 -0400

adding tuples, element access and list declarations

commit 914d59e8fdc2£f50936a1029e2331880£d233¢cc2a
Merge: 38ad827 al09889

Author: Megan O’Neill <mo2638@columbia.edu>
Date: Tue Mar 29 19:39:07 2016 -0400

Merge branch 'master’ into tests
commit al09889c890b214d4ald8193836acccc4995e819
Author: Steve Cheruiyot <scheruiyot@columbia.edu>

Date: Tue Mar 29 16:40:06 2016 -0400

fixing empty line issue in parser and changing a few test files to match
scolkam syntax

commit 95ed676941d6fa7ad7ae98a716f3c682374c46e8

39

Author: Connor Hailey <connorhailey@gmail.com>
Date: Tue Mar 29 13:15:08 2016 -0400

added test log to see what issues are

commit 6c8a05c12765d76b2457008bblb497edc73846e4
Author: Connor Hailey <connorhailey@gmail.com>
Date: Tue Mar 29 12:58:32 2016 -0400

added ability to test files

commit a650b0e5e6£0c6364922e793144£de9%ee442f47b
Merge: acc7cbl 9ccaa2f

Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Tue Mar 29 02:29:57 2016 -0400

Merge pull request #6 from lemeb/parser
Improving on scanner-parser testing
commit 9ccaa2f6c6a6275326e£15d3575a13fe69970ec9

Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Tue Mar 29 02:17:55 2016 -0400

a better parser-scanner tester

commit 658eb9164b7ale950d4e97ebee2e468b12b0ba’d
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Mon Mar 28 17:07:06 2016 -0400

parser testing script

commit acc7cbl133d3ea387b55ddd1l76b2abl£807543878
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Mon Mar 28 20:56:21 2016 +0000

Added the first REPL instructions that you need to execute to have LLVM
and the AST working

commit fefa8b635f03aa769691215858ed0a73051ccbh2a
Author: Leopold Mebazaa <1Im3037@columbia.edu>
Date: Mon Mar 28 20:44:12 2016 +0000

Tasklist for Semantic Analyser
commit 38ad8278bde51lef3ddb0cbe8082896d5£85b3267
Author: Megan O’'Neill <mo2638@columbia.edu>
Date: Mon Mar 28 15:49:11 2016 -0400

arith & augment tests
commit e€95£658cd3558fad4dbe9%e79¢c756700£dd611593

Author: Leopold Mebazaa <1m3037Q@columbia.edu>
Date: Sun Mar 27 21:38:28 2016 +0000

40

Housekeeping (the codegen does not have any syntax errors anymore)
added function calls

commit a0954£f78047732a420de84b422a019488f51fdef
Merge: adl02f3 1b3f3ab

Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sun Mar 27 13:19:50 2016 -0400

Added unary operations

commit adl02£3795e13300090468fe5d33f2b6db0113a4
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Sun Mar 27 13:18:50 2016 -0400

Added unary operations

commit 1b3f3a5ad3e519287546345028c669ddb670e091
Merge: 95al2db 0dl5ce2

Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Mar 27 13:01:17 2016 -0400

Merge branch ’codeGenTypes’

commit 0d15ce213a9a989c5af6ef28186284bb2813e4dlc
Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Mar 27 13:00:51 2016 -0400

added string and one types

commit 525e6a4016£77ece83d7d2516e86a34831134330
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Mar 27 12:51:22 2016 -0400

adding a token generating version of the scanner
commit 95al2dbc6743f6cbca2735f2cfd480b46£5£3953

Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Sun Mar 27 12:48:22 2016 -0400

Removed Physical Equality
commit 84ecf33672f147681a30d8a7e331de88dea8a771f
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Fri Mar 25 04:09:52 2016 +0000

Began the Code Generation!
commit ¢3b9%9a594500949b5f7da37a1765d3860bb8c1b58
Merge: b8d8e56 7b3197b
Author: Leopold Mebazaa <lemebfr@gmail.com>

Date: Thu Mar 24 15:30:19 2016 -0400

Merge pull request #5 from lemeb/tests

41

and

Tests

commit b8d8e561e00946a2cc830eb12812012e2¢c43££70
Merge: 781607e 5d4d991

Author: Leopold Mebazaa <lemebfr@gmail.com>
Date: Thu Mar 24 15:29:57 2016 -0400

Merge pull request #4 from lemeb/parser

Parser
commit 7b3197bfdade5775£565a4fa085d204a4ef14465
Merge: ecdff02 8db90db
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Thu Mar 24 11:24:53 2016 -0400

Merge branch ’'tests’ of github.com:lemeb/scolkam into tests
commit ecdff02477b9de3664000a1088ea01426c064c8b
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Thu Mar 24 11:24:35 2016 -0400

another round of tests
commit 8db90db35c69b79b9ed51157£757badb096748bc
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Thu Mar 24 00:09:50 2016 -0400

changes to comply with LRM
commit 725bb8dc04£f60c701335cb94bl1f3£f31b694c291f
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Wed Mar 23 23:51:16 2016 -0400

removed colon in function argument list
commit 5d4d99116e6336720e2e2cfad9cflc8c2acl3bl3
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>
Date: Tue Mar 22 23:51:07 2016 -0400

bug fixes for scanner and parser

scanner: removed ’super’, fixed float;
parser: added ’'FILE’ token

commit 34f063f4bcfbcd6eb4478074a98c932d2288c717
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Tue Mar 22 19:05:05 2016 -0400

removed keyword ’tuple’

removed keyword ’‘tuple’ as it is not really used anywhere

42

commit 3487cd7cb4d7a3696c0222b67571c6cc6cl922£8
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Tue Mar 22 18:45:51 2016 -0400

adding tuples

commit e7d138291e7647f£8dd48608d7e767aeflc81cl3
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Tue Mar 22 18:31:37 2016 -0400

Removed unused tokens
Removed unused tokens - curly brackets and decorator

commit 36004739¢c39dded584861322aeb7139219a458c8
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Tue Mar 22 17:58:39 2016 -0400

few fixes on ast.ml

commit 781607ecc7fl12fcl5eb5aa7694efad2fc5£f01c095
Merge: 542a335 9b21508

Author: Steve Cheruiyot <skc2143@columbia.edu>
Date: Tue Mar 22 17:18:07 2016 -0400

Merge pull request #3 from lemeb/parser
adding dot notation
commit 9b215080afelc59e9abceb5443flbcf4cd2de598E

Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Mon Mar 14 22:23:12 2016 -0400

adding dot notation

commit a59d411bllfdceefat31b523e950419d2066b7£5
Merge: 496d2cb 542a335

Author: Megan O’Neill <mo2638@columbia.edu>
Date: Thu Mar 10 18:45:00 2016 -0500

Merge branch 'master’ into tests
commit 496d2cb028925d7a47b1£f5c202af6£88758aa456
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Thu Mar 10 18:44:41 2016 -0500

round two microc tests
commit 542a335ceaz2ad6£3890f515c65f2e2ea03326£d6
Merge: 609a223 balcb5e9
Author: Steve Cheruiyot <skc2l43@columbia.edu>

Date: Wed Mar 9 22:38:03 2016 -0500

Merge pull request #2 from lemeb/parser

43

Few changes to match LRM

commit ba0c5e934895e4ff78b1b222f36fb1694d02b0eb
Merge: 7ab38b8 ec51d98

Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Wed Mar 9 22:34:01 2016 -0500

Merge branch ’'parser’ of https://github.com/lemeb/scolkam into parser
adding changes from the lrm
commit 7ab38b83c7bda3010caffc699931a563a2aa772e9
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Wed Mar 9 22:30:13 2016 -0500
incorporating changes from the lrm
commit a68a3a9560aldf7b8aba8babb9e586154e9fbag’
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Mon Mar 7 23:20:18 2016 -0500
first round of microC tests
commit ca67eaf2d656a94bec0f449pbf4336£2e74636a9
Author: Megan O’Neill <mo2638@columbia.edu>
Date: Mon Mar 7 22:31:27 2016 -0500
first pass at bst & avl classes
commit e€c51d98def40eb882240761£f11d1c912130c75e4
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Mon Mar 7 21:59:18 2016 -0500
Added LRM and cleaning
commit 9b88565fd9df1808879077a412c£880480c0995f
Author: Leopold Mebazaa <1lm3037@columbia.edu>
Date: Mon Mar 7 21:58:12 2016 -0500
Added LRM
commit 38baB8e6fle8d83afld2f93f77a4f0d67afb0eb50
Author: Leopold Mebazaa <1m3037@columbia.edu>
Date: Mon Mar 7 21:27:12 2016 -0500
Added Progress Update
commit 609a223blb292742a77795e7££580c£8d6£83ccO
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>

Date: Sun Mar 6 20:46:14 2016 -0500

Minor changes after review

44

Minor changes after review

commit ad60c792elfl1f3e8a77£fd8316£564f222babcfe8
Merge: cc96095 bd67508

Author: Steve Cheruiyot <skc2l143@columbia.edu>
Date: Sun Mar 6 13:35:33 2016 -0500

Merge pull request #1 from lemeb/parser
parser accepting classes, functions variable declarations and statements

commit bd67508cc8cd4614ed6750c63bc5e01cf96783452
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Mar 6 03:05:47 2016 -0500

adding classes to parser, string and float literals to scanner

commit cc96095d4037fa7%edca53b9d692d121dc3c4b21
Author: Kathy Fomin <kathy@Kathys-MacBook-Air.local>
Date: Mon Feb 29 12:37:11 2016 -0500

LRM - Initial commit
Completed Standard Library. Remaining chapters: Classes and Statements.

commit 8832430b879207efbad70893a81c88£fdbfd3179%e
Merge: dcbb2d4 2aldbcé

Author: Megan O’Neill <mo2638@columbia.edu>
Date: Sun Feb 28 19:18:35 2016 -0500

Merge branch ’'tests’

commit 2aldbc6ecd4d7ce33948e15c745e31£fc902d5d290
Author: Megan 0’'Neill <mo2638@columbia.edu>
Date: Sun Feb 28 19:17:22 2016 -0500

super basic 11
commit 3bl13749baa2lacldf77aaef0320cd412f4dall24

Author: Megan O’Neill <mo2638@columbia.edu>
Date: Sun Feb 28 18:30:59 2016 -0500

calculator plus misc tests
commit a82e8879c8d8413e8dfed9d9p8a58efc46479058
Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Feb 28 16:18:28 2016 —-0500
declaration —--> assignment
commit 226c7e14c05831b0cfal9%fe9p0206b778£a6595

Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Feb 28 15:26:58 2016 -0500

45

remove type declaration from functions, remove parentheses from if
statements, use ’‘end’ keyword to delineate if/else/while and function
blocks

commit 771ee2f70391c84ca3dal0434£183d0f6667734e
Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Feb 28 14:38:13 2016 -0500

parser is accepting basic function declaration

commit 44d26900ee65f70f81le98ac5dc8abbdca24af82b
Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Feb 28 14:19:30 2016 -0500

changed VOID to NONE
commit 89394683cd78de5373d23£5e57dd830250ebc48c

Author: Connor Hailey <connorhailey@gmail.com>
Date: Sun Feb 28 14:17:46 2016 -0500

initial setup of microc derivative with some scolkam syntax

commit dcbb2d47d79e24096edlal0alcc846a35£355238
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Feb 28 19:03:52 2016 +0000

adding end token
commit 541dde216cc86497d0a245ecbled8be8lec2b276
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Feb 28 18:58:01 2016 +0000

adding scanner.mll
commit eac7f4ce85d454344eb63dde202al1dl748ec49e4
Author: Steve Cheruiyot <scheruiyot@columbia.edu>
Date: Sun Feb 28 17:02:16 2016 +0000

adding scanner
commit 3ed7695d0bb9b873dc4486794d07£5210ab7d12c
Author: Kathy Fomin <kathy.fomin@gmail.com>
Date: Fri Feb 19 16:30:25 2016 -0500

Revised Proposal

PDF version
commit 0clelbb25978700af3bd36ecaae218c7428dfe56
Author: Leopold Mebazaa <lemebfr@gmail.com>

Date: Fri Feb 19 15:54:57 2016 -0500

Revised the proposal

46

commit 5f5e4872£9d28251511£3dbf0389d06c630£f567a
Author: Leopold Mebazaa <lemebfr@gmail.com>
Date: Fri Feb 19 15:50:28 2016 -0500

Added the Revised Proposal
commit ceb7a94556b8e7bf668a24f707a6a5b64e3e1215
Author: Leopold Mebazaa <lemebfr@gmail.com>

Date: Thu Feb 18 21:25:17 2016 -0500

Initial commit

47

Chapter 5

Architectural Design

5.1

Overall architecture

The compiling pipeline is composed of the following modules:

5.2

scanner .ml reads the different tokens of the input,
parser.mly transforms this series of token into an Abstract Syntax Tree,
which AST.m1 defines (the file also makes some pretty printing functions available),

clean_ast.ml makes a few transformations to the AST so that it is easier to generate code; for
instance, it makes that all the statements recored outside of functions are regrouped into a main
function, which LLVM requires,

semant .ml checks that the AST is proper and that, for instance, type mismatches will not occur, and

codegen.ml generates the LLVM code.

Schema of the architecture

48

sSource

program
*.5C0

l

Scanner:
Lexical Analysis

i token stream

Parger:
Syntax Analysis

i AST

Clean AST

i

Semantic Analyzer

i Semantically-checked AST

Code Generator

!

LLVM IR

program
"l

49

Chapter 6

Test Plan

A variety of testing techniques were utilized to create a robust testing environment for the Scolkam language.
Various testing techniques utilized include: testing automation, unit tests, integration tests, positive testing,
and negative testing.

Prior to actually testing the code output by the code generator, the parser and scanner was first tested. We
created a script to run all the tests through the parser and scanner first, and output if they passed, or if
there was a parse error.

Initially our tests are broken up into tests that are meant to pass, and tests that are meant to fail, thereby
utilizing positive and negative testing. Negative testing ensures that invalid input is not accepted, and that
the language properly rejects the invalid input. Positive testing on the other hand allows us to assess if our
assertions and expectations about the language and given programs are correct.

Unit testing was utilized to determine if smaller pieces of our language were behaving as expected, and
defined in the Language Reference Manual. Tests were picked out by going through the Language Reference
Manual, looking at all the defined features, and creating tests based on those features. Once these smaller
tests were verified to be passing, they were then integrated into larger programs, to asses how different pieces
of the language behaved together. Integration testing allowed us to slowly piece various units of our language
together and assert with confidence that they worked. This combination approach enabled us to write a full
fledged demo program.

The automation of testing proved to be an extremely useful tool for developing Scolkam. Automation allowed
us to test our entire suite of features, in real time as they were added. We based our automation script off
of the one provided in the micro-c compiler code. While team members could see which tests were passing
at any time, a weekly list was also sent out with all tests that had previously been passing, to ensure that
new code did not break existing code.

The tests were developed by Megan and Kathy, who then reported what was passing and failing to the other

team members. The testing automation script was based upon the micro-c testing script, and modified by
all team members.

50

Chapter 7

Lessons Learned

Connor P. Hailey

Having to actually build out the architecture (scanner, parser, ast, semant, codegen) as a opposed to see-
ing it on a powerpoint flowchart helped to make the concepts concrete. I found doing code generation in
LLVM using the Ocaml library was pretty difficult because of how little documentation there is. If I could
do it over again, I would choose to generate LLVM IR directly because the resources are much more plentiful.

Léopold Mebazaa

I did not realize how much, proportionally, is just learning the APIs. I thought that the bulk of the
work would be done after we would know how to use LLVM, and that the majority of the work would be
to do the conception of the language. Instead, it was mostly struggling to understand a language with a
documentation that is confusing and principles that are not easy to understand. OCaml, on the other side,
was pretty easy to grasp.

Megan O’Neill

Building the compiler really taught me that a test driven design approach is best, especially in this case.
With so many features to be implemented, it would’ve been best to write code specifically for the features
that we were working on that week, and then waiting until those features were completed, and those tests
passed, until writing more tests. Without TDD, it was more difficult to determine which test cases were
needed, and which tests were supposed to be passing.

Steve K. Cheruiyot

Writing a compiler requires careful planning and lots of flexibility as features change along the way. While
the limited documentation available for OCaml LLVM bindings posed a challenge, writing parts of both
the frontend and the backend of the compiler was a great way to learn and internalize the general structure
of the compiler. At the same time I was able to add a powerful functional language, OCaml, to my repertoire.

Yekaterina Fomina

Since the LRM document is the first formal document describing the language, it is good to have all team
members involved in writing it. This will not only ensure that everybody’s input is considered but will help
to have a clear picture of the intended features of the language. The document ends up being very long and
it is unlikely that people will read it in its entirety. This can potentially increase the number of deviations
from the original idea.

During ‘crunch time’, it is very easy to shift your focus on short-term objectives and disregard long-term
risks. Spending a bit more time at the beginning of the project on clarifying design aspects of the language

51

saves a lot of time at the end.

Once all team members agree on the features of the language, the development process should be driven by
LRM. If some features listed in LRM cannot be implemented or have to be implemented differently than
described in LRM, then it has to be communicated and the updates to LRM need to be done right away
before it is forgotten. This will ensure that the document is always up-to-date and team members responsible
for development and testing have confidence that they can rely on the document at any given time.

52

Chapter 8

Appendix

8.0.1 scanner.mll

(» Ocamllex scanner for Scolkam =)

open Parser

let unescape s =

Scanf.sscanf ("\"" & g A~ "\"") "$S%!" (fun x —> Xx)
}
let alpha = ['a’-"z" "A"-"72"]
let escape = "\\’ [/\\/ 777 rwr rnr rpl 1]
let escape_char = '’’’ (escape) "'’
let ascii = ([" "="17 "§r—r[r r]r=r~"17)
let digit = ["0"-"9"]
let id = alpha (alpha | digit | "_")~*
let string = """’ ((ascii | escape)* as s) "’/
let char = '’’ (ascii | digit) "'’
let float = (digit+) [’.’] digit+
let int = digit+
let whitespace = [’/ 7 ’'\t’ ’'\r’]
let return = "\n’

rule token = parse

whitespace { token lexbuf }
| 7 #7 { single_comment lexbuf }
| "\7\7\"" { multi_commentl lexbuf }
[T { multi_comment2 lexbuf }
[7 ({ LPAREN }
| ")’ { RPAREN }
L { LBRACKET }
| 17 { RBRACKET }
| ;7 { SEMI }
| 7 { COLON }
| "\n’ { EOL }
L, { coMMA }

(» Operators x)

53

N { PLUS }
r—r { MINUS }
"kt { TIMES }
A { DIVIDE }
=¥ { MODULUS }
"= { PLUSEQ }
"= { MINUSEQ }
"= { TIMESEQ }
"/=" { DIVIDEEQ }
"= { MODULUSEQ }
r=r { ASSIGN }
t==" { EQ }

nr= { NEQ }

T’ { LT }

= { LEQ }

">n { GT }

">=" { GEQ }
"and" { AND }
"or" { OR }
"not" { NOT }
"in" { IN }

Control flow x)

"if" { IF }
"elif" { ELIF }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"break" { BREAK }
"continue" { CONTINUE }
"return" { RETURN }
"end" { END }

Data types and atomx)

"int" { INT }
"float" { FLOAT }
"str" { STRING }
"bool" { BOOL }
"True" { TRUE }
"False" { FALSE }
"None" { NONE }
"tuple" { TUPLE }

Functions and Classes and object management x)

"def" { FUNCTION }
"class" { CLASS }
"new" { NEW }

int as lxm
float as lxm

INT_LITERAL (int_of_string 1lxm) }
FLOAT_LITERAL (float_of_string lxm) }

{
{
string { STRING_LITERAL((unescape s)) }
id as 1lxm { ID(1lxm) }
eof { EOF }
_ as char { raise (Failure("SyntaxError: Invalid syntax -> " ~ Char.escaped

54

char)) }

and multi_commentl = parse

"\I \I

\'" { token lexbuf }
{ multi_commentl lexbuf }

and multi_comment2 = parse
"\N"\"\"" { token lexbuf }

{ multi_comment2 lexbuf }

and single_comment = parse

"\n’ { token lexbuf }
| _ { single_comment lexbuf }
8.0.2 parser.mly

/+ Ocamlyacc parser for Scolkam =/

% {

open Ast
%}
%$token CLASS FUNCTION NEW
%$token SEMI LPAREN RPAREN COMMA COLON LBRACKET RBRACKET
%$token PLUS MINUS TIMES DIVIDE MODULUS ASSIGN NOT
$token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR
%$token PLUSEQ MINUSEQ DIVIDEEQ TIMESEQ MODULUSEQ
%$token END RETURN IF ELIF ELSE FOR WHILE IN BREAK CONTINUE
%$token INT BOOL FLOAT STRING NONE TUPLE
$token <int> INT_LITERAL
$token <float> FLOAT_LITERAL
$token <string> STRING_LITERAL
%$token <string> ID
%$token EOL EOF
$right ASSIGN

$left DOT
$left OR
%left AND

$right

PLUSEQ MINUSEQ DIVIDEEQ TIMESEQ MODULUSEQ

3left EQ NEQ

$left LT GT LEQ GEQ

$left PLUS MINUS

%left TIMES DIVIDE MODULUS

$right

NOT NEG

%$start program
$type <Ast.program> program

o\°
o\°

program:
decls EOF { $1 }

55

/* (stmt list % var_decl list) * (func_decl list * class_decl lis
decls:

¢ 1, th, 1, 01}

| decls stmt { ($2 :: fst (fst $1), snd (fst $1)), (fst (snd $1

| djiig Jdecl { (fst (fst $1), $2 :: snd (fst $1)), (fst (snd $1

| dgizg gdecl { (fst (fst $1), snd (fst $1)), ($2 :: fst (snd $1

| d:ﬁig Sdecl { (fst (fst $1), snd (fst $1)), (fst (snd $1), $2
$1)) }

/+ Class declaration =/
cdecl:
CLASS ID LPAREN objects_opt RPAREN COLON EOL cbody END EOL
{ A
cname = $2;
cformals = $4;
cbody = $8;
ol

cbody:
/+ nothing %/ { { vdecls = []; stmts = []; funcs = []; } }
| cbody vdecl { { vdecls $1.vdecls @ [$2]; stmts = $1.stmts;
funcs; } }
| cbody stmt { { vdecls
funcs; } }
| cbody fdecl { { vdecls = $1l.vdecls; stmts = $1l.stmts; funcs =

$1.vdecls; stmts Sl.stmts @ [$2];

$21; 1}
objects_opt:
/* nothing x/ { [] }
| object_list { List.rev $1 }

object_list:

typ { [s1] }
| object_list COMMA typ { $3 :: $1 }

/* Function declaration =/
fdecl:

t) o/

), snd (snd
), snd (snd
), snd (snd

snd (snd
funcs = $1.
funcs = $1.
$1.funcs @

FUNCTION typ ID LPAREN formals_opt RPAREN COLON EOL fbody END EOL

{ A

typ = $2;
fname = $3;
formals = $5;
fbody = $9;
bl

fbody:
/+ nothing »/ { { f_vdecls = []; f_stmts = []; } }

| fbody vdecl { { f_vdecls = $1.f_vdecls @ [$2]; f_stmts = $1.f_ stmts;

| fbody stmt { { f_vdecls = $1.f_vdecls; f_stmts = $1.f_stmts @

56

[$21;

}

}

}

}

[

formals_opt:
/* nothing =/ { [] }
| formal_ list { List.rev $1 }

formal_list:

typ ID { [(s1,82)1 }
| formal_list COMMA typ ID { ($3,%4) :: $1 }
typ:
INT { Int }
| FLOAT { Float }
| BOOL { Bool }
| STRING { String }
| NONE { None }
|

typ TUPLE { Tuple($1, 0) }

/+ Variable Declaration x/
vdecl:
typ ID ASSIGN expr EOL { match $1 with
Tuple (ty, _) ->
(match $4 with
TupleLit 1 —-> (Tuple(ty, List.length 1), $2,
$4)
| Call(_,_) —-> (Tuple(ty, 0), $2, $4)
| _ —> raise (Failure "You can only define a
tuple with an expression with a tuple
grammar."))
-> ($1, $2, $4) 1}

/* Statements x/

stmt_list:
/* nothing =/ { [] }
| stmt_list stmt { $2 :: $1 }
stmt
EOL Nostmt }
expr EOL Expr $1 }
BREAK EOL Break }

Continue }

Return Noexpr }
Return $2 }

$2 1}
Declaration($1) }

|
|
| CONTINUE EOL
| RETURN EOL
| RETURN expr EOL
| IF internal_if EOL
| vdecl
/* Before:
If (Expr, Stmts to execute if yes, Stmts to execute if no)

P e T T e T

Now :
If (Expr, List of Stmts to execute if yes, [List of Elifs(expr, List of
stmts to execute i1f yes)], List of Stmts to execute if no) =/

| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN internal_block EOL

{ For($3, $5, $7, $9) }
| FOR expr IN expr internal_block EOL { ForIn($2, $4, $5) }

57

| WHILE expr internal_block EOL
| expr IN expr COLON EOL

internal_block:

| COLON EOL stmt_list END

internal_if:

| expr COLON EOL stmt_list elif list

elif_ list:

/%

nothing */

{ 1]

| elif elif 1list { $1

elif:

}

$2

}

ELIF expr COLON EOL stmt_list

else_list:

/* nothing

*/ {

[]

}

| ELSE COLON EOL stmt_list
/* Expressions */
expr_opt:

/+ nothing x/ { Noexpr }

| expr { $1

expr
INT_LITERAL

| FLOAT_LITERAL

| STRING_LITERAL

| TRUE

| FALSE

| ID

| expr PLUS expr

| expr MINUS expr

| expr TIMES expr

| expr DIVIDE expr

| expr MODULUS expr

| ID PLUSEQ expr

| ID MINUSEQ expr

| ID TIMESEQ expr

| ID DIVIDEEQ expr

| ID MODULUSEQ expr

| expr EQ expr

| expr NEQ expr

| expr LT expr

| expr LEQ expr

{ 84}

e e e T T e e T T e)

N e

{ While (%2,
{ In($1,

{ Block(List.rev $3)

else_list END

{ I£($1,

$3) 1}

$3)}

rev $6))

{ E1if($2,

IntLit ($1)

}

FloatLit ($1) 1}

StringLit ($1) }
BoolLit (true) }
BoolLit (false) 1}

Id($1) }
Binop($1,
Binop($1,
Binop ($1,
Binop ($1,
Binop ($1,
let idl
Assign ($1,
let idl =
Assign ($1,
let idl =
Assign ($1,
let idl
Assign ($1,
let idl
Assign ($1,
Binop ($1,
Binop($1,
Binop($1,
Binop ($1,

58

Add, $3)
Sub, $3)
Mult, $3)
Div, $3)
Mod, $3)
Id($1) in
Binop (idl,
Id($1) in
Binop (idl,
Id($1) in
Binop (idl,
Id($1) in
Binop(idl,
Id($1) in
Binop (idl,
Equal, $3)
Neq, $3)
Less, $3)
Leq, $3)

e e e o

}

Add,

Sub,

Mult,

Div,

Mod,

}

Block (List.rev $4),
Block (List.rev $5),

Block (List.

Block (List.rev $5)) 1}

$3)) '}
$3)) }
$3)) }
$3)) '}
$3)) }

Assign ($1, $3) }
Call($1, $3) }

expr GT expr { Binop($1l, Greater, $3) }
expr GEQ expr { Binop($1l, Geq, $3) }
expr AND expr { Binop($1l, And, $3) }
expr OR expr { Binop($1, Or, $3) }
MINUS expr %prec NEG { Unop (Neg, $2) }
NOT expr { Unop (Not, $2) }

{

{

ID LPAREN actuals_opt RPAREN

LPAREN expr RPAREN { $2 1}
LPAREN actuals_list RPAREN { TuplelLit (List.rev $2) }
ID LBRACKET expr RBRACKET { Element ($1, $3) }

|
|
|
|
|
|
| ID ASSIGN expr
|
|
|
|
|

NONE

—_—

Noexpr }

actuals_opt:
/* nothing =/ { [] }
| expr { [$11 1}
| actuals_list { List.rev $1 }

actuals_list:
actual_sublist COMMA expr { $3 :: $1 }
| actual_sublist COMMA { $1 }

actual_sublist:

expr { [$1] 3}
| actual_sublist COMMA expr { $3 :: $1 }
8.0.3 ast.ml

(# Abstract Syntax Tree and functions for printing it =)

type op = Add | Sub | Mult | Div | Mod | Equal | Neq | Less | Leq | Greater |
Geq |
And | Or

type uop = Neg | Not

type expr =
IntLit of int

| FloatLit of float

| StringLit of string

| BoolLit of bool

| TuplelLit of expr list

| Id of string

| Binop of expr * Op * expr

| Unop of uop * expr

| Assign of string * expr
| Call of string * expr list
| Element of string % expr
| Noexpr

type typ = Int | Float | Bool | String | None | Tuple of typ * int

type bind = typ * string

59

type var_decl = typ x string * expr

type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr x stmt » stmt *x stmt
| Elif of expr x stmt
| For of expr x expr * expr * stmt
| ForIn of expr x expr x stmt
| While of expr x stmt
| HiddenWhile of expr x stmt x stmt
| In of expr * expr
| Declaration of var_decl
| Break
| Continue
| Nostmt
type func_body = {
f_vdecls: var_decl list;
f_stmts: stmt list;

type func_decl
typ : typ;
fname : string;
formals : bind list;
fbody : func_body;

{

type class_body = {
vdecls: var_decl list;
stmts: stmt list;
funcs: func_decl list;

type class_decl = {
cname : string;
cformals : typ list;
cbody : class_body;

type program = (stmt list x var_decl list) * (func_decl list x class_decl list

)

(x» Pretty-printing functions =)

let string_of_op = function
Add -> "+"
Sub > n_mn

|

| Mult —=> "x"

| Div —=> "/"

| Mod —> "&"

| Equal —-> "=="

60

Neq —-> "!="
Less —> "<"
Leg —> "<="
Greater —-> ">"
Geg —> ">="
And -> "and"
Or —> "or"

string _of_uop = function
Neg _> n_nmn
Not —-> "not"

rec string_of_expr = function
IntLit (i) -> string_of_int i
FloatLit (f) -> string_of_float £
StringLit (s) -> s

BoolLit (true) -> "True"

BoolLit (false) -> "False"

Id(s) —-> s

Binop(el, o, e2) —>
string of_expr el ~ " " % string of op o * " " © string_of_expr e2

Unop (o, e) —-> string of_uop o * string of_expr e

Assign(v, e) -> v ~ " =" " string_of_expr e

Call(f, el) -> £ ~ "(" »~ String.concat ", " (List.map string_of_expr el)
") n

TuplelLit (el) —-> " (" ~ String.concat ", " (List.map string_of_expr el) ~ ")
"

Element (s, e) —> s ~ "[" » string_of_expr e ~ "]"

Noexpr —-> ""

rec string_of_stmt = function
Block (stmts) -> String.concat "" (List.map string_of_stmt stmts) ~ "end\n"
Expr (expr) —-> string_of_expr expr ~ "\n";
Return (expr) -> "return " © string_of_expr expr ~ "\n";
If(e, sl, elifs, s2) -> "if " »~ string_of_expr e ~ ":\n" *
string_of_stmt sl » string_of_stmt elifs »~ "else:\n" ~ string_of_stmt s2
Elif (e, sl) -> "else if " » string of_expr e ~ ":\n" ~ string_of_stmt sl
For(el, e2, e3, s) —>
"for (" » string_of_expr el ~ " ; " %~ string of_expr e2 ~ " ; " ~
string _of_expr €3 ~ "):\n " ~ string_of_stmt s
While(e, s) —-> "while " ~ string_of_expr e ~ ":\n " " string_of_stmt s
HiddenWhile(_, _, _) —-> ""
ForIn(el, e2, s) —-> "for " ~ string_of_expr el ~ " in " » string_of_expr
e2 ~ ":\n" ~ string_of_stmt s
In(el, e2) —-> string_of_expr el ~ " in " » string_of_expr e2 ~ ":\n"

Break —-> "break"
Continue -> "continue"
Declaration(typ, id, expr) —->

let expr = string_of_expr expr in
let typ = string_of_typ typ in
" (DECLARATION: " ~ typ ~ " " ~ id »
", EXPR: " ~ expr ~ ")"

Nostmt —> ""

61

let

string_of_typ = function

Int —> "Int"

Float —> "Float™"

Bool -> "Bool"

String -> "Stzr"

None -> "None"

Tuple(t, 1) -> "Tuple[length "“string_of_int 17"] (""string_of_typ t"")"
string_of_vdecl (t, id, e) = string of typt ~ " " ~ id~» " ="~

string of_expr e

let string_of_fdecl fdecl =
"def " » string_of_typ fdecl.typ ~ " " *
fdecl.fname ~ " (" »~ String.concat ", " (List.map snd fdecl.formals) "
") :\n" A
String.concat "" (List.map string_ of_vdecl fdecl.fbody.f_ vdecls) *
String.concat "" (List.map string of_stmt fdecl.fbody.f_stmts) *
"end\n"
let string_of_cdecl cdecl =
"class " ©~ cdecl.cname ~ "(" %~ String.concat ", " (List.map string_of_typ
cdecl.cformals) *
") :\n" A
String.concat "" (List.map string_of_vdecl cdecl.cbody.vdecls) *
String.concat "" (List.map string_of_stmt cdecl.cbody.stmts) *
String.concat "" (List.map string_of_ fdecl cdecl.cbody.funcs) »~ "end\n"
let string_of_program (stmts_and_vdecls, funcs_and_classes) =
String.concat "\n" (List.map string_of_stmt (fst stmts_and_vdecls)) ~ "\n" *
String.concat "\n" (List.map string_of_vdecl (snd stmts_and_vdecls)) ~ "\n"
String.concat "\n" (List.map string_of_fdecl (fst funcs_and_classes)) ~ "\n"

A

String.concat "\n" (List.map string_of_cdecl (snd funcs_and_classes))

let

let

rec pt n = match n with 0 -> "\n" | _ -> (pt (n - 1)) ~ "\t"
rec abstract_expr n = function
IntLit (1) -—>
"int " ” string_of_int 1
FloatLit (f) —->
"float " » string_of_float £
StringLit (s) ->

"Strlng \" " A s A "\" "
BoolLit (true) —->
"bool mw A "True"

BoolLit (false) —>
"bool " A "False"

Id(s) ->
"id mw A S

Binop(el, o, e2) —>
(pt n) ~ "binop (" *

abstract_expr (n + 1) el ~ "™ "
~ string_of_op o

A n n A

62

abstract_expr (n + 1) e2 ~ ™))"
| Unop (o, e) —>
(pt n) ~ "unop (" °
string_of_uop o ~ " " ~ abstract_expr (n + 1) e ~ ")"
| Assign (v, e) —>
(pt n) ~ "assign (" * v A" ="~
abstract_expr (n + 1) e ~ ™")"
| Call(f, el) —>
let abx x = (abstract_expr (n + 1) x) in
(pt n) ~ "call (" ~ £ ©
"(args: " ~ String.concat ", " (List.map abx el) ~ ")"
| TuplelLit (el) ->
let abx x = (abstract_expr (n + 1) x) in
(pt n) »~ "Tuple(" ~ String.concat ", " (List.map abx el) *
| Element(s, e) -> s ~ "[" ”~ string_of_expr e ~ "]"

nn

| Noexpr —>

let rec abstract_stmt n = function
Block (stmts) —>
let abm x = (abstract_stmt (n + 1) x) in
let content = String.concat "" (List.map abm stmts) in
(pt n) ~ "(BLOCK: " ~ content ~ ")"
| Expr (expr) —>
let content = abstract_expr (n+l) expr in
(pt n) ~ "(EXPR: " ~ content ~ ")"
| Return (expr) ->
let content = abstract_expr (n+l) expr in
(pt n) ~ "(RETURN: " ~ content ~ ™)"
| If(e, sl, elifs, s2) —->
let condition = abstract_expr (n+l) e in
let then_stmts = abstract_stmt (n+2) sl in
let elseifs = abstract_stmt (n+2) elifs in
let else_stmts abstract_stmt (n+2) s2 in
(pt n) ~ "(IrFr: " ~
(pt (n+l)) ~ "(CONDITION: " ~ condition ~ ™)" ~
(pt (n+1)) ~ "(THEN: " ~ then_stmts ~ ")" *
(pt (n+l1)) ~ "(ELSE IF: " ~ elseifs ~ ")" ~
(pt (n+l)) ~ "(ELSE: " * else_stmts ~ ")"
Ay
| Elif (e, sl) —->
let condition = abstract_expr (n+l) e in
let then_stmts abstract_stmt (n+l1l) sl in
(pt n) ~ "(ELIF: " *
" (CONDITION: "™ ~ condition ~ ")" 7
(pt n) ~ "(THEN: " ”~ then_stmts ~ ")"
A ") "w
| For(el, e2, e3, s) —>
let content_beg = abstract_expr (n+l) el in
let condition = abstract_expr (n+l) e2 in
let iteration = abstract_expr (n+l) e3 in

63

let stmts

= abstract_stmt (n+2) s in
(pt n) ~ "(FOR: " ~ "\n" *
(pt (n+l)) ~ "(BEGIN: " ~ content_beg ~ "M)" *
(pt (n+1)) ~ "(CONDITION: " ~ condition ~ ")" ~
(pt (n+l)) ~ "(ITERATION: " ~ iteration ~ ™)" ~
(pt (n+l)) *~ "(STATEMENTS: " ~ stmts ~ ")"
") "
| While(e, s) —->
let condition = abstract_expr (n+l) e in
let stmts = abstract_stmt (n+2) s in
(pt n) ~ "(WHILE: " ~ "\n" ~
(pt (n+1l)) ~ "(CONDITION: " ~ condition ~ ")" *
(pt (n+l)) ~ "(STATEMENTS: " ~ stmts ~ ")" *
") n
| HiddenWhile(_, _, _) —> ""
| ForIn(el, e2, s) —>
let expr = abstract_expr (n+l) el in
let tuple = abstract_expr (n+l) e2 in
let stmts = abstract_stmt (n+2) s in
(pt n) ~ "(FORIN: " *
"(EXPR: " %~ expr ~ Mm" ~
(pt (n+1l)) ~ "(ITERABLE LIST: " ~ tuple ~ ")" *
(pt (n+l)) ~ "(STATEMENTS: " ~ stmts ~ ")" *
") n
| Declaration(typ, id, expr) —->
let expr = abstract_expr (n+l) expr in
let typ = string of_typ typ in
(pt n) ~ "(DECLARATION: " ~ typ ~ " " ~ id *
", EXPR: " ~ expr ~ ")"
| In(_, _) -> "IN"
| Break -> (pt n) ~ "BREAK"
| Continue -> (pt n) ~ "CONTINUE"
| Nostmt -> (pt n) ~ "NOSTMT"
let abstract_func n fdecl =
let abm x = (abstract_stmt (n + 1) x) in
let args = String.concat ", " (List.map snd fdecl.formals) in
(pt n) ~ "(FUNCTION. TYPE: " » string_of_typ fdecl.typ ~ ", NAME:" *
fdecl.fname ©~ ", ARGS: (" * args ~ "m)" ~*
(pt n) ~ "STATEMENTS: " ~ String.concat "" (List.map abm fdecl. fbody.

f stmts) ~©

ll) n

let abstract_of_program

(stmts_and_vdecls,

let abm x = (abstract_stmt 1 x) in
let abf x = (abstract_func 1 x) in
let stmts =
String.concat "\n" (List.map abm
let vdecls =
String.concat ", " (List.map string_of_vdecl
let funcs =
String.concat "\n" (List.map abf

64

(fst stmts_and_vdecls))

(fst funcs_and_classes))

funcs_and_classes) =

in

(snd stmts_and_vdecls))

in

in

let classes =

String.concat "\n" (List.map string_of_cdecl (snd funcs_and_classes)) in
"(stmts: " ~ stmts A My An"
"(vdecls: " ~ vdecls ~ ") \n" *
"(funcs: " ~ funcs A~ ™y \n" *
"(classes: " ”~ classes ~ ") \n"

8.0.4 clean ast.ml

open Ast
module S = Semant

let clean ast =

let rm_nost type_list =
let type_remove_rec original element = match element with
| Ast.Nostmt —-> original
| _ —-> List.append original [element] in
List.fold_left type_remove_rec [] type_list in
let change_function_statment k =
{ Ast.typ = k.Ast.typ;
Ast.fname = k.Ast.fname;
Ast.formals = k.Ast.formals;
Ast.fbody = { Ast.f_vdecls = k.fbody.Ast.f_vdecls;
Ast.f_stmts = rm_nost k.fbody.Ast.f_stmts}}
in
(# Convert global variables to assignemnt statements x)
let edit_globals g_list
let create_stmt vdecl = match vdecl with

(_, n, e) —> Ast.Expr (Ast.Assign (n, e))
in
let rec helper g ¢ = match g with
[] —> ¢
| hd :: tl -> helper tl (create_stmt hd :: c);

in helper g_list []
in

let statements = fst (fst ast) in

let globals = snd (fst ast) in

let functions = fst (snd ast) in

let classes = snd (snd ast) in

let no_stmt_functions = List.map change_function_statment functions in
((statements, globals), (* Statements and globals x)

((List.append [{ Ast.typ = Ast.None;

fname = "main";
formals = [];
fbody = { Ast.f_vdecls = []; (x empty: this way it doesn

"t affect scope of globals x*)
f_stmts = edit_globals globals @ List.rev (
rm_nost statements) }}]
no_stmt_functions), (* Functions =)
classes)) (x Classes x*)

8.0.5 semant.ml

65

(» Semantic checking x)

open Ast

exception Error of string

module StringMap = Map.Make (String)

(# Semantic checking of a program. Returns NoneType if successful,
throws an exception if something is wrong.

Check each global variable, then check each function x)
let check ((_, globals), (functions, classes)) =

(» Raise an exception if the given list has a duplicate x)
let report_duplicate exceptf list =

let rec helper = function
nl :: n2 :: _ when nl = n2 -> raise (Failure (exceptf nl))
| _ :: t —> helper t
1 > 0

in helper (List.sort compare list)
in

(# Raise an exception if a given binding is to a nonetype type *)

let check_not_none exceptf = function
(Ast.None, n, _) —-> raise (Failure (exceptf n))
[— => ()
in
let check_not_none_formals exceptf = function
(Ast .None, n) —-> raise (Failure (exceptf n))
I — —> ()
in

(# Railise an exception of the given rvalue type cannot be assigned to
the given lvalue type x)

let check_assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise err

in

(#*%* Checking Global Variables xxxx)

List.iter (check_not_none (fun n -> "Illegal NoneType global variable " %~ n)
) globals;

report_duplicate (fun n -> "Duplicate global " *

-> n) globals);

n) (List.map (fun (_, n, _)

(» TODO: Check assign on global wvariables x)

(» Function declaration for a named function x)
let built_in_decls = StringMap.add "print"

66

{ typ = Ast.None; fname = "print"; formals = [(Int, "x")];
fbody = { f_vdecls = []; f_stmts = [] } } (StringMap.singleton "prints"
{ typ = Ast.None; fname = "prints"; formals = [(String, "x")];
fbody = { f_vdecls = []; f_stmts = [] } }) in
let built_in_decls = StringMap.add "toint" { typ = Ast.Int; fname = "toint";
formals = [(Float, "x")]; fbody = { f_vdecls = []; f_stmts = [] } }

built_in_decls in
let built_in_decls = StringMap.add "tofloat" { typ = Ast.Float; fname

tofloat"; formals = [(Int, "x")]; fbody = { f_vdecls = []; f_stmts = []
}} built_in_decls
(% (StringMap.singleton "printb" { typ = Ast.None; fname = "printb";
formals = [(Bool, "x")1;
fbody = { f_vdecls = []; f_stmts = [] } })*)

in

let function_decls = List.fold left (fun m fd -> StringMap.add fd.fname fd m
)

built_in_decls functions
in

let function_decl s = try StringMap.find s function_decls

with Not_found -> raise (Failure ("Unrecognized function " * s))
in

(% % * % Check functions * %k k)
let check_function func =

report_duplicate (fun n -> "Duplicate function " ~ n)
(List.map (fun fd -> fd.fname) functions);

List.iter (check_not_none_formals (fun n -> "Illegal nonetype formal " * n
" in " »~ func.fname)) func.formals;
report_duplicate (fun n -> "Duplicate formal " ~ n ~ " in " » func.fname)

(List.map snd func.formals);

List.iter (check_not_none (fun n -> "Illegal NoneType local variable " ~ n
" in " »~ func.fname)) func.fbody.f_vdecls;
report_duplicate (fun n -> "Duplicate local variable " ~ n ~ " in " ~ func
. fname)
(List.map (fun (_, n, _) —-> n) func.fbody.f_vdecls);

(x Type of each variable (global, formal, or local x)
let symbols = List.fold left (fun m (t, n) —-> StringMap.add n t m)

StringMap.empty ((List.map (fun (t, n, _) -> (t, n)) globals) @ func.
formals @
(List.map (fun (t, n, _) —-> (t, n)) func.fbody.f_vdecls))
in

let type_of_identifier s =
try StringMap.find s symbols

67

with Not_found —-> raise (Failure ("Undeclared identifier " © s))
in

(* Return the type of an expression or throw an exception x)

let rec expr = function
IntLit _ -> Int
FloatLit _ —-> Float
BoolLit _ —-> Bool

Id s —> type_of_identifier s
TuplelLit 1 ->
let first_el = List.hd 1 in
let type_el = expr first_el in
let length = List.length 1 in
Tuple (type_el, length)
| Binop(el, op, e2) as e —-> let tl = expr el and t2 = expr e2 in
(match op with
Add | Sub | Mult | Div | Mod when tl = Int && t2 = Int -> Int
| Add | Sub | Mult | Div | Mod when tl = Float && t2 = Float ->
Float
| Add when tl = String && t2 = String ->
(match (el, e2) with
(Ast.StringLit (), Ast.StringLit(_)) -> String
| _ —> raise (Failure ("Only raw strings can be concatenated
")))

| Equal | Neq when tl = t2 -> Bool

| Less | Leq | Greater | Geg when tl = t2 -> Bool

| And | Or when tl = Bool && t2 = Bool -> Bool

| _ —> raise (Failure ("Illegal binary operator " »~ string_of_typ tl

A

|
|
| StringlLit _ -> String
|
|

" "~ string_of _op op * " " ” string of_ typ t2 ~ " in " %
string_of_expr e))

| Unop(op, e) as ex —> let t = expr e in
(match op with
Neg when t = Int -> Int
| Neg when t = Float —> Float
| Not when t = Bool -> Bool

| _ —> raise (Failure ("Illegal unary operator " » string_of_uop op
string of_typ t ~ " in " ” string_of_expr ex)))
| Assign(var, e) as ex —> let 1t = type_of_identifier var
and rt = expr e in
check_assign (type_of_identifier var) (expr e)
(Failure ("Illegal assignment " » string_of_typ 1t ~ " =" *
string of_typ rt ~ " in " ~ string_of_expr ex))

| Call(fname, actuals) as call ->
if fname <> "print" then (x The print function can have different
types of arguments =)
(let fd = function_decl fname in

if List.length actuals != List.length fd.formals then
raise (Failure ("Expecting " ~ string of_int
(List.length fd.formals) ~ " arguments in " * string_ of_expr
call))

68

else
List.iter2 (fun (ft, _) e —-> let et = (match expr e with
(# Since there is a call to
another function, we don’t care
about the length x)
Ast.Tuple(ty, _) -> Ast.Tuple(ty, 0)
|_ —> expr e) in
ignore (check_assign ft et
(Failure ("Illegal actual argument found "

A

A

string_of_typ et

" expected " ” string_of_typ ft ~ " in " © string_of_expr e))
))
fd.formals actuals;
fd.typ) else String
| Element(_, el) as element ->

if expr el !'= Int then

raise (Failure ("Invalid element access in " » string_of_expr element)
)

else Int

| Noexpr —-> Ast.None
in

let check_variable_assign (t, n, ex) =
let rt = expr ex in
ignore (check_assign (type_of_identifier n) (expr ex)
(Failure ("Illegal assignment " ~ string of typ t ~ " =" *
string_of_typ rt *

" in \'" » string of_ typt ~ " " A~ n A" " ="~
string_of_expr ex ~ "\'""))); ()

in
let check_bool_expr e = if expr e != Bool

then raise (Failure ("Expected Boolean expression in " * string_of_expr

e))

else ()

in

(» Verify a statement or throw an exception x)

let rec stmt = function
Block sl —-> let rec check_block = function
[Return _ as s] —-> stmt s
| Return _ :: _ —-> raise (Failure "nothing may follow a return")
| Block sl :: ss —-> check_block (sl @ ss)
| s :: ss —=> stmt s ; check_Dblock ss
[T > 0

in check_block sl
| Expr e —-> ignore (expr e)
| Return e —> let t = (match expr e with (% Since there is a call to
another function, we don’t care
about the length x)

Ast.Tuple(ty, _) -> Ast.Tuple(ty, 0)
|_ —> expr e) in if t = func.typ then () else
raise (Failure (func.fname ~ " returns " * string of_typ t ~ " but "

A

69

N "

string_of_typ func.typ was expected."))
| If(p, bl, b2, b3) —-> check_bool_expr p; stmt bl; stmt b2; stmt b3
| Elif(p, bl) —-> check_bool_expr p; stmt bl

| For(el, e2, e3, st) —-> 1ignore (expr el); check _bool_expr e2;
ignore (expr e3); stmt st
| ForIn(_, e2, st) —-> (x Handle nonetype identifier el x)
if (match expr e2 with
Tuple(_, _) —> false
| _ —> true) && expr e2 != String

A

then raise (Failure ("Expected a tuple or a str in "
string_of_expr e2));
stmt st
| While(p, s) —> check_bool_expr p; stmt s
| HiddenWhile (e, sl, s2) —-> ignore(expr e); stmt sl; stmt s2
| In(el, e2) -> if (match expr e2 with
Tuple(_, _) —-> false
| _ => true) then
raise (Failure ("Expected a tuple in "
~ string_of_expr e2))
else ()
Break -> ignore (0)
Continue -> ignore (0)
Nostmt -> ignore (0)
Declaration(_) —-> ignore (0)

A N n n

string_of_expr el

in
ignore (List.map check_variable_assign func.fbody.f_ vdecls);
stmt (Block func.fbody.f_stmts); ()
in
(%% % Check classes * ok k)

let check_class c =

n N A

List.iter (check_not_none (fun n -> "Illegal NoneType class local n
" in " ”~ c.cname)) c.cbody.vdecls;
report_duplicate (fun n -> "Duplicate class local " ~ n ~ " in " ” c.cname

)
(List.map (fun (_, n, _) —-> n) c.cbody.vdecls);

List.iter check_function c.cbody.funcs;
in
List.iter check_class classes;
List.iter check_function functions;
noA

report_duplicate (fun n —-> "Duplicate class
cname) classes)

n) (List.map (fun cd -> cd.

8.0.6 codegen.ml

module L = Llvm
module Fcmp = Llvm.Fcmp
module A = Ast
module StringMap = Map.Make (String)

let translate ((_, globals), (functions, classes)) =

70

let
let

(» Declare printf (),

let
let
let
let

let
and
and

(# For the implementation

let
and

context =

the_module = L.

i32_t
i8_t =
il t =
flt_t
str_t =
void_t

and
and
and
and
and
and

[e e e o

printf_t =
printf_func =
prints_t =
prints_func =

int_format_str

float_format_str b =
string_format_str b

(after_block)
(before_block)

L.global_context ()
create_module context
.132_type context
.18_type context
.11_type context
.double_type context
.pointer_type
.void_type context in

b

of
ref
= ref

(Global variables =«*)

let

global_vars =

ref

in

L.build_global_stringptr
L.build_global_stringptr "$f\n"
L.build_global_stringptr "%$s\n"

"break’

(L.block_of_ wvalue
(L.block_of_value

(StringMap.empty)

"Scolkam"

(L.18_type context)

and ’continue’

in

(» Current function and local variables x)
ref StringMap.empty in

let
let

(local_vars) =
currentf = ref

(List.hd functions)

in

"%d\n"

*)

n fmt "
n fmt "
n fmt n

(L.const_int 1i32_t 0))
(L.const_int 132_t 0))

which the print built-in function will call)
L.var_arg_function_type 1i32_t [| L.pointer_type 18_t

L.declare_function "printf" printf_t the_module in
L.var_arg_function_type str_t [| L.pointer_type 18_t

L.declare_function "puts" prints_t the_module in

b
b
b in

in

(» Return the value or the type for a variable or formal argument =)
(x All the tables have the structure

let name_to_1llval n

L.llvalue =

try (snd (StringMap.find n
with Not_found -> (snd
in
let name_to_type n A.typ =
try (fst (StringMap.find n
with Not_found -> (fst
(» LLVM types x*)
let rec ltype_of_typ = function
A.Int -> 132_t
| A.Float -> flt_t
| A.Bool -> il t
| A.String -> str_t
| A.None -> void_t
| A.Tuple(t, _) —-> L.pointer_type
and gen_type = function
A.IntLit _ -> A.Int
| A.FloatLit _ -> A.Float

(type, llvalue)

!local_vars))
(StringMap.find n

!local_vars))
(StringMap.find n

(ltype_of_typ t)

71

*)

!global_vars))

!global_vars))

in

]

]

in

in

| A.BoolLit _ -> A.Bool
| A.StringLit _ -> A.String
| A.Tuplelit x -> gen_type (List.hd x)
| A.Element (e,_) -> gen_type (A.Id(e))
| A.Id s -> (match (name_to_type s) with
A.Tuple(t,_) -> t
| _ as ty -> ty)
| A.Call(s,_) -> let fdecl =
List.find (fun x -> x.A.fname = s) functions in
(match fdecl.A.typ with
A.Tuple(t,_) —> t
| _ as ty —> ty)
| A.Binop(el, _, _) —-> gen_type el
| A.Unop(_, el) -> gen_type el
| A.Assign (s, _) -> gen_type (A.Id(s))
| A.Noexpr -> raise (Failure "corrupted tree - Noexpr as a
statement")

and lreturn_type ty = match ty with
A.Tuple (t, _) —-> L.pointer_type (ltype_of_typ t)
| _ —> ltype_of_typ ty

and find_type (t, _) = ltype_of_typ t

and format_str x_type builder =
let b = builder in
match x_type with
A.Int -> int_format_str b
| A.Float -> float_format_str b
| A.String —-> string_format_str b
| _ —> raise (Failure "Invalid printf type")

in

(# Define each function (arguments and return type) so we can call it «x)
let function_decls =
let function_decl m fdecl =
let name = fdecl.A.fname
and formal_types = Array.of_list (List.map find_type fdecl.A.formals)
in
let ftype = L.function_type (lreturn_type fdecl.A.typ) formal_types in
StringMap.add name (L.define_function name ftype the_module, fdecl) m

in List.fold_left function_decl StringMap.empty functions
in

(* Invoke "f builder" if the current block doesn’t already
have a terminal (e.g., a branch). x)
let rec add_terminal builder f =
match L.block_terminator (L.insertion_block builder) with
Some _ —-> ()
| None —-> ignore (f builder)

(» Return the code of an expression to be built in LLVM %)

72

(# This code is partially inspired by the ideas behind the
memory management in 2015’s Dicewx)

and

expr builder = let b = builder in
function
A.IntLit 1 -> L.const_int i32_t i
A.FloatLit £ -> L.const_float flt_t £
A.BoolLit b —> L.const_int 1il1_t (if b then 1 else 0)
A.StringLit sl -> L.build_global_stringptr sl "string" b
A.Tuplelit elts —>
let sizeva = (List.length elts) + 1 in
let size = L.const_int 132_t sizeva in
let ty = ltype_of_typ
(A.Tuple (gen_type (List.hd elts), sizeva)) in
let arr = L.build_array_malloc ty size "initl" b in
let arr = L.build_pointercast arr ty "init2" b in
let _ = L.build_bitcast size ty "init3" b in
let values = List.map (expr b) elts in
let buildf i v =
(let arr_ptr =
L.build_gep arr [| (L.const_int i132_t (i+1)) |] "init4" b in
ignore(L.build_store v arr_ptr b);)
in
List.iteri buildf values; arr
A.Element (s, e) —->
let idx = expr b e in
let idx = L.build_add idx (L.const_int i32_t 1) "accessl" b in
let arr = expr b (A.Id(s)) in
let res = L.build_gep arr [| idx |] "access2" b in
L.build_load res "access3" b
A.Noexpr —-> L.const_int 1i32_t O
A.Id s -> let 1llval = (name_to_1llval s) in
L.build_load llval s b
A.Binop (el, op, e2) —->
let el’ = expr b el
and e2’ = expr b e2
and float_ops = (match op with
A.Add -> L.build_fadd
| A.Sub -> L.build_fsub
| A.Mult -> L.build_fmul
| A.Div —> L.build_fdiv
| A.Mod -> L.build_frem
| A.And -> L.build_and
| A.Or -> L.build_or
| A.Equal -> L.build_fcmp L.Fcmp.Oeq
| A.Neq -> L.build_fcmp L.Fcmp.One
| A.Less -> L.build_fcmp L.Fcmp.Olt
| A.Leq -> L.build_fcmp L.Fcmp.Ole
| A.Greater -> L.build_fcmp L.Fcmp.Ogt
| A.Geq -> L.build_fcmp L.Fcmp.Oge
)
and int_ops = match op with
A.Add -> L.build_add
| A.Sub -> L.build_sub
| A.Mult -> L.build_mul

73

| A.Div -> L.build_sdiv
| A.Mod —> L.build_urem
| A.And -> L.build_and
| A.Or -> L.build_or
| A.Equal -> L.build_icmp L.Icmp.Eg
| A.Neq -> L.build_icmp L.Icmp.Ne
| A.Less -> L.build_icmp L.Icmp.Slt
| A.Leq -> L.build_icmp L.Icmp.Sle
| A.Greater -> L.build_icmp L.Icmp.Sgt
| A.Geq -> L.build_icmp L.Icmp.Sge
and str_ops = match op with
| A.Add -> expr b (A.StringLit ((A.string_of_expr el) ~ (A.
string_of_expr e2)))
| _ —> (L.const_int 132_t 0)
in
if (L.type_of el’” = flt_t || L.type_of e2’ = flt_t) then float_ops el’
e2’ "tmp" builder
else if ((L.type_of el’ = str_t) && (L.type_of e2’ = str_t)) then

str_ops else int_ops el’ e2’
| A.Unop(op, e) —>
let e’ expr b e in

(match op with

"tmp" builder

A.Neg -> if (L.type_of e’ = flt_t) then L.build_fneg else L.
build_neg
| A.Not -> L.build_not) e’ "tmp" b
| A.Assign (s, e) —-> let e’ = expr b e in
ignore (L.build_store e’ (name_to_1llval s) b); e’
| A.Call ("print", [e]) | A.Call ("printb", [e]) ->
let e’ = expr b e in
let e_type = gen_type e in
L.build_call printf_func [| (format_str e_type b) ; e’ |]
"printf" b
| A.Call ("prints", [e]) —->
L.build_call prints_func [| (expr b e) |]
"puts" b
| A.Call ("toint", [e]) —->
let e’ = expr b e in
let e_type = L.string_of_lltype (L.type_of e’) in
if e_type = L.string_of_lltype i32_t
then raise (Failure "You converted int to int")
else if e_type = L.string_of_lltype flt_t
then L.build fptosi e’ 132_t "cast" b
(» else if e_type = L.string of_ lltype il_t
then L.build_bitcast e’ i32_t "castbool" b x*)
else raise (Failure ("You cannot convert from this type to int"))
| A.Call ("tofloat", [e]) ->
let e’ = expr b e in
let e_type = L.string of_ lltype (L.type_of e’) in
if e_type = L.string_of_ lltype flt_t

then raise (Failure "You converted float to float")
else if e_type L.string_of_lltype i32_t

then L.build_sitofp e’ flt_t "castint" b
(x else if e_type L.string_of_ 1lltype il_t

then L.build _bitcast e’ flt_t "castbool"

b *)

74

else raise (Failure ("You cannot convert from this type to int"))
| A.Call (f, act) —->

let (fdef, f_decl) = StringMap.find f function_decls in
let actuals = List.rev (List.map (expr b) (List.rev act)) in
let result = (match f_decl.A.typ with A.None -> ""

| _ => £ ~ " _result") in

L.build_call fdef (Array.of_list actuals) result b

(# Build the code for the given statement; return the b for
the statement’s successor x)
and stmt builder = let b = builder in
let (the_function, _) = StringMap.find !currentf.A.fname function_decls
in
function
A.Block sl -> List.fold_ left stmt b sl
| A.Expr e -> ignore (expr b e); b
| A.Return e -> ignore (match !currentf.A.typ with
A.None —-> L.build_ret_void b
| -> L.build_ret (expr b e) b); b

| A.If (predicate, then_stmts, else_if stmts, else_stmts) ->

(# Removing the elseifs by recursively replacing the else_statements x)
let rec remove_elif (_, _, else_if stmts, else_stmts) =
(match else_if_stmts with
A.Block (hd::tl) —>
let new_predicate, new_then =
(match hd with

A.Elif (condition,stmts) -> condition, stmts
| _ —> raise (Failure "Corrupted tree - Elseif problem")) in
let new_else_ifs = A.Block(tl) in
let new_else = remove_elif (new_predicate, new_then, new_else_ifs,

else_stmts) in
A.If (new_predicate, new_then, new_else_ifs, new_else)

| A.Block([]) -> else_stmts
| _ -> else_stmts) in
let new_else_stmts = remove_elif (predicate, then_stmts, else_if stmts,

else_stmts) in

let bool_val = expr b predicate in
let merge_bb = L.append_block context "merge" the_function in

(* Emit "then’ wvalue. *)

let then_bb = L.append_block context "then" the_function in

let then_code = (stmt (L.builder_at_end context then_bb) then_stmts) in
add_terminal then_code (L.build_br merge_bb) ;

(* Emit 'else’ value. *)

let else_bb = L.append_block context "else" the_function in

let else_code = (stmt (L.builder_at_end context else_bb) new_else_stmts)
in

add_terminal else_code (L.build_br merge_bb);

(# Add the conditional branch. x)
ignore (L.build_cond_br bool_val then_bb else_bb b);

75

L.builder_at_end context merge_bb
| A.While (predicate, body) -> stmt b (A.HiddenWhile (predicate, body, A.
Block ([A.Nostmt])))
| A.HiddenWhile (predicate, body, increment) ->
let pred_bb = L.append_block context "while" the_function in
ignore (L.build_br pred_bb Db);

let body_bb = L.append_block context "while_body" the_function in

let pred_b = L.builder_at_end context pred_bb in
let bool_val = expr pred_b predicate in

let increment_bb = L.append_block context "increment" the_function in
let increment_b = L.builder_at_end context increment_bb in
let merge_bb = L.append_block context "merge" the_function in

ignore (before_block increment_bb) ;
ignore (after_block := merge_bb);
add_terminal (stmt (L.builder_at_end context body_bb) body)
(L.build_br increment_bb) ;
add_terminal (stmt increment_b increment)
(L.build_br pred_bb);
ignore (L.build_cond_br bool_val body_bb merge_bb pred_b);
L.builder_at_end context merge_bb
| A.For (el, e2, e3, body) -> stmt b
(A.Block [A.Expr el ; A.HiddenWhile (e2, A.Block [body], A.Expr e3) 1]
)
| A.Nostmt -> ignore (0); b
| A.Continue ->

let block = fun () —-> !before_block in

ignore (L.build _br (block ()) b); b
| A.Break —>

let block = fun () —-> !after_block in

ignore (L.build_br (block ()) b); b
| A.Declaration _ -> raise (Failure "Corrupted Tree")
| A.E1if (_,_) | A.ForIn (_,_,_) | A.In () —->

raise (Failure "Corrupted Tree")

and global_var m (t, n, e) =
let (f,_) = StringMap.find "main" function_decls in
let builder = L.builder_at_end context (L.entry_block f) in
(» Build the first initialization of the variables x)
let rec init t e match e with

A.IntLit _ | A.FloatLit _ | A.BoolLit _ | A.StringlLit _ -> expr
builder e
| A.TuplelLit (_) —->
let ty = ltype_of_typ t in
L.const_ptrtoint (L.const_int i32_t 0) ty
| -
match t with
A.Int —> expr builder (A.IntLit (0))

| A.Float —> expr builder (A.FloatLit(0.0))
| A.String —-> expr builder (A.StringLit (""))
| A.Bool -> expr builder (A.BoolLit (true))

76

| A.Tuple(_, _) —-> (init t (A.TuplelLit([1)))

| A.None -> expr builder (A.Noexpr)
in
let tuple (t, (L.define_global n (init t e) the_module)) in
StringMap.add n tuple m

(» Fill in the body of the given function x)

and build_function_body fdecl =
let (the_function, _) = StringMap.find fdecl.A.fname function_decls in
let builder = L.builder_at_end context (L.entry_block the_function) in

currentf := fdecl;

(» Construct the function’s "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map =*)

let add_formal m (t, n) p =

L.set_value_name n p;
let local = L.build_alloca (find_type (t, n)) n builder in
ignore (L.build_store p local builder);
StringMap.add n (t, local) m
in

let add_local m (t, n) =
let local_var = L.build_alloca (find_type (t, n)) n builder in
StringMap.add n (t, local_var) m

in

let formals = List.fold_left2 add_formal StringMap.empty fdecl.A.formals
(Array.to_list (L.params the_function)) in

local_vars := List.fold_left add_local formals
(List.map (fun (t, n, _)—-> (t, n)) fdecl.A.fbody.A.f_vdecls)
7
let assign_variable (_, n, e) =
let e’ = expr builder e in ignore (L.build_store e’ (name_to_llval n)

builder); e’
in
(» Build the code for each statement in the function «)
let builder = ignore (List.map assign_variable fdecl.A.fbody.A.f_vdecls);
stmt builder (A.Block fdecl.A.fbody.A.f_stmts);
in

(+ Add a return if the last block falls off the end =«*)
add_terminal builder (match fdecl.A.typ with
A.None —> L.build_ret_void
| £t => L.build_ret (L.const_int (ltype_of_typ t) 0))

in

let build_class_body _ =

7

in

(# Declare each global variable; remember its value in a map x)

let globals = List.rev globals in

List.iter (fun k -> global_vars := global_var !global_vars k) globals;
List.iter build_class_body classes;

List.iter build_function_body functions;

the_module

8.0.7 testall.sh

#!/bin/sh

Regression testing script for scolkam

Step through a list of files

Compile, run, and check the output of each expected-to-work test
Compile and check the error of each expected-to-fail test

Path to the LLVM interpreter
LLI="11i-3.7"
#LLI="/usr/local/opt/llvm/bin/111i"

Path to the scolkam compiler. Usually "./scolkam.native"

Try "_build/scolkam" if ocamlbuild was unable to create a symbolic link.
SCOLKAM="./scolkam.native -c"

#SCOLKAM="_build/scolkam.native"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm —-f $Sgloballog
error=0

globalerror=0

keep=0
Usage () {
echo "Usage: testall.sh [options] [.sco files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}
SignalError () {
if [Serror -eq 0] ; then
echo "FATILED"
error=1
fi
echo " S$1"

Compare <outfile> <reffile> <difffile>

78

Compares the outfile with reffile. Differences, if any,

Compare () {
generatedfiles="S$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$S1" "S$2" > "S3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

Run <args>
Report the command, run it, and report any errors
Run () {

echo $+ 1>&2

eval $x || {

SignalError "$1 failed on $x"

return 1

}

RunFail <args>
Report the command, run it, and expect an error
RunFail () {
echo $+ 1>&2
eval $* && {
SignalError "failed: $x did not report an error"
return 1
}

return O

Check () |
error=0
basename=‘echo $1 | sed "s/.x\\///
s/.sco//" "
reffile=‘echo $1 | sed 's/.scoS$//""
basedir="‘echo $1 | sed ’"s/\/["\/1xS//"/."

echo —n "$basename..."

echo 1>&2
echo "###### Testing Sbasename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.ll ${basename}.out" &&
Run "$SCOLKAM" $1 "|" "SLLI" ">" "${basename}.out"
Compare ${basename}.out ${reffile}.out ${basename}.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then
if [Skeep -eq 0] ; then
rm —-f $generatedfiles

79

written to

difffile

fi

echo "OK"
echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=S$error
fi

CheckFail () {
error=0
basename=‘echo $1 | sed 's/.*\\///
s/.sco//""
reffile=‘echo $1 | sed 's/.sco$//'"
basedir="‘echo $1 | sed "s/\/["\/1xS$//"/."

echo —n "$basename..."

echo 1>&2
echo "###### Testing S$basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &¢&
RunFail "$SCOLKAM" "<" $1 "2>" "S{basename}.err" ">>" Sgloballog &&
Compare ${basename}.err ${reffile}.err ${basename}.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then

if [Skeep -eq 0] ; then
rm —-f Sgeneratedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=S$error
fi

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files

keep=1
i
h) # Help
Usage
P
esac

done

shift ‘expr $OPTIND - 1°

80

LLIFail () {
echo "Could not find the LLVM interpreter \"SLLI\"."
echo "Check your LLVM installation and/or modify the LLI variable in testall

.sh"
exit 1
}
which "$LLI" >> S$Sgloballog || LLIFail

if [$# —ge 1]
then
files=5a
else
files="tests/test-*.sco tests/fail-*.sco"
fi

for file in $files
do
case S$file in
*test—x)
Check S$file 2>> S$globallog
I
*fail—=%)
CheckFail $file 2>> $globallog
i
*)
echo "unknown file type $file"
globalerror=1
i
esac
done

exit S$Sglobalerror

8.0.8 Makefile

Make sure ocamlbuild can find opam-managed packages: first run
#
eval ‘opam config env®
Easiest way to build: using ocamlbuild, which in turn uses ocamlfind
.PHONY : scolkam.native
scolkam.native
ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags -w,+a-4 \
scolkam.native
"make clean" removes all generated files
.PHONY : clean

clean
ocamlbuild -clean

81

rm -rf testall.log x.diff scolkam scanner.ml parser.ml parser.mli
rm —-rf *.cmx x.cmi *.cmo *.cmx *.0 *.11
rm —-rf x.err =x.out

More detailed: build using ocamlc/ocamlopt + ocamlfind to locate LLVM
OBJS = ast.cmx codegen.cmx parser.cmx scanner.cmx semant.cmx scolkam.cmx

scolkam : $(OBJS)
ocamlfind ocamlopt -linkpkg -package core -package llvm —-package llvm.
analysis $(OBJS) -o scolkam

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly
$.cmo : %.ml
ocamlc -c $<

$.cmi : %$.mli
ocamlc —-c $<
g.cmx : %.ml
ocamlfind ocamlopt -c -package llvm $<

Generated by "ocamldep *.ml x*.mli" after building scanner.ml and parser.ml
ast.cmo :

ast.cmx

codegen.cmo : ast.cmo

codegen.cmx : ast.cmx

scolkam.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo
scolkam.cmx : semant.cmx scanner.cmx parser.cmx codegen.cmx ast.cmx
parser.cmo : ast.cmo parser.cmi

parser.cmx : ast.cmx parser.cmi

scanner.cmo : parser.cmi

scanner.cmx : parser.cmx

semant.cmo : ast.cmo

semant.cmx : ast.cmx

parser.cmi : ast.cmo

Building the tarball
TESTS = add arith arith_2 arith_3 arith_4 arith_5 augment augment2 augment3

augment4 avl_tree bst calc fibonacci float_add float_div \
float_multi float_sub for funct functl funct2 global hello_world if
linked_ list \

misc_test modulus print print-string tuple_access tuple_slice unary \
FAILS = x_funct x_funct print \

TESTFILES = $(TESTS:%=test-%.sco) $(TESTS:%=test-%.out) \
S(FAILS:%=fail-%.sco) S$(FAILS:%=fail-%.err)

82

TARFILES = ast.ml codegen.ml Makefile scolkam.ml parser.mly README scanner.mll
\
semant.ml testall.sh $(TESTFILES:%=tests/$%)

83

References

[1]

2]
131

[4]

http://www.gnu.org/software/gnu-c-manual /gnu-c-manual.html The GNU C Reference Manual.. N.p.,
n.d. Web. 26 Oct. 2015.

Edwards, Stephen. "COMS W/}115 Programming Language and Translators.” Lectures.

https://docs.python.org/3/reference /index.html "The Python Language Reference" The Python Lan-
guage Reference.

https://courses.cs.washington.edu/courses/cse140/13wi/eval _rules.pdf "Python Evaluation Rules"
"Python FEvaluation Rules”

84

	Introduction
	Language Tutorial
	Prerequisites
	Using a Compiler
	Data Manipulation
	Declaration and Assignment
	Control Flow

	Language Manual
	Lexical Analysis
	Line structure
	Identifiers
	Keywords
	Literals
	Operators
	Delimiters
	Scoping Rules

	Data Types
	Type inference
	None
	int
	bool
	float
	tuple
	str
	Casting

	Expressions
	Literal Expressions
	Operator Expressions

	Operators
	Arithmetic operators
	Comparison
	Assignment - =
	Identity
	Logical
	Unary

	Statements
	Simple Statements
	Compound Statements

	Project Plan
	Planning Process
	Specification Process
	Development Process
	Testing Process
	Programming Style
	Project Timeline
	Roles and Responsibilities
	Development Environment
	Project Log

	Architectural Design
	Overall architecture
	Schema of the architecture

	Test Plan
	Lessons Learned
	Appendix
	scanner.mll
	parser.mly
	ast.ml
	clean_ast.ml
	semant.ml
	codegen.ml
	testall.sh
	Makefile

	References

