Democritus



“"MicroC++."”

A tribute to Stephen "“David” Edwards, Jr.



Goals

Provide a simple, useful language that allows a user
to easily write concurrent, low-level programs.
Compile to LLVM for a platform-independent IR.

1. Implement Go syntax for clarity and ease-of-use
2. Add built-in concurrency features



Syntax

® Decided to emulate Go syntax for a chance
to rework the compiler front-end and emulate
an interesting modern programming
paradigm

function main() int { .. }

® Introduced an Ocaml-style 1et keyword for
variable declaration to overcome parsing
errors with this syntax.



Threads & Networking

® Built-in thread() function allows user to create
a number of threads executing a given
function
function thread(fname string, arg *void, nthreads int)

® Demonstration: concurrently loading several

webcomic images.
® Another built-in function uses the C Sockets

APl to load content from a webpage



Structs

® Robust struct implementation
o Disallows circular struct declarations, allows
nested struct implementations
o Structs can be declared in any order
regardless of dependencies



Pointers, casting, and strings

® Pointers and mallocing allows data to be
passed around functions

® Malloc returns a void®, casting possible

® Even though we support pointers, we have a
native string data type



Data Structures

® Ultilizing:
o Nested structs
o Pointers

® LinkedList
o Add_front
o Add_tail
o Delete
o Print_list



Contributions

Amarto: Threads implementation, binding C functions,
sockets API, file I/O, function pointers, frontend syntax
changes

Amy: Structs, nested structs, pointers, pointer casting, data
structure implementation

Emily: language design/direction, resident Git n*zi, added
some C bindings (e.g. sleep(), 1seek(), memset()),
networking + threading + file 1/0 contributions, frontend syntax
changes.

Kyle: structs, language reference manual, final project report,
helping Amy with: nested structs, pointers, debugging



Lessons Learned

Amarto:

o Debugging a compiler is like playing whack-a-mole -- it's much easier to write a script to
isolate the action you’re trying to debug, and then gradually build it back into the compiler
(thanks to David for this hint)

Amy:

o Trying to force new code to match legacy code can be more effort than it's worth. It's
always okay to branch and attempt a larger rewrite if it will make everyone’s lives easier.
Also, be sure to understand your own syntax when writing tests.

Emily:

o Remote teamwork can be tough. Writing tests that guarantee no regressions is

surprisingly difficult, especially when testing against remote files.
Kyle:

o Inateam, try to play your strengths and figure out where you can help most effectively. If

you think you can do something well or more efficiently than someone else, try to do it

and save time - same thing works the other way (if pressed for time, let someone who
knows how to do it manage it)



