Scolkam Steve K. Cheruiyot (skc2143)
Programming Language Proposal Yekaterina Fomina (yf2222)
COMS W4115 Programming Languages and Translators Connor P. Hailey (cph2117)
Prof. Stephen Edwards Léopold Mebazaa (Im3037)
February 10, 2016 Megan O’Neill (mo2638)

Summary

The Scolkam programming language is a subset of the Python programming language that
compiles down to LLVM. Scolkam is therefore a general-purpose, kind of multi-paradigm® pro-
gramming language. This language is mostly a technical exercise. However, Scolkam would
also offer the opportunity to implement some features that are not existing natively, or poorly
implemented, in Python. Multi-line comments, multi-threading, static typing for functions are
among various suggestions obeying to that logic.

Implementing a subset of an existing programming language requires one to define the
boundaries of that subset. We are not clear about what the perimeter of that subset should
be. Therefore, we have divided this document in two sections. In the first section, we discuss
what seem to be the minimal, bare-bones requirements of a Python-like language. In the second
section, we mention different features that we could add on top of these minimal requirements.
We also divided these additional features into four categories: the ones that add a new paradigm
to Python (object-oriented or functional), the ones that are just more advanced Python features,
the ones that are not well-implemented by Python, and the ones that could be very useful add-
ons but seem too complicated to implement.

Minimal Language Features

Indentation

The syntax, like Python, would not define the beginning and the end of a function or a branch
by using curly braces, but rather by indentation. We expect our parser to behave like the
Python parser described in this document?. Namely, it would be able to detect different styles
of indentation. For instance, indenting a block of code with 1 tab or 2 spaces or 4 spaces or 2
tabs is equivalent as long as the indentation is consistent. It would probably use some kind of
stack to correctly parse the indentation. If this parser proves too cumbersome to implement,
we may compel users to write end to show the end of code-block.

Comments

Inline comments would stay the same as in Python. We would like to add our own version of
multi-line comments. In Python, they are so counter-intuitive to write that even the creator
of the language deems it a "pro tip”?. We would enable users to write multi-line comments by
putting them between two pairs of #. *

! In its smallest form, Scolkam is closer to an imperative programming language. Proposed extensions of the
language can make it also object-oriented or functional.

% This is a link. URL: http://www.secnetix.de/olli/Python/block_indentation.hawlk

3 URL: https://twitter.com/gvanrossum /status,/112670605505077248

4 We are aware that there are parsing challenges with writing multi-line comments that close to inline com-
ments. Therefore, we may very well change the syntax of these multi-line comments.

http://www.secnetix.de/olli/Python/block_indentation.hawk
https://twitter.com/gvanrossum/status/112670605505077248

a = 0.0 # This is a comment
x =3
This is a multi—line comment

#

3
=3

z
y

#a, ©, y are defined
z 1s not defined

Data Types

As in Python, all data is represented by an object. These objects are immutable. (We are
thinking of adding mutable data structures to the language —see Section ”Potential add-ons”.)
We are not sure of the architecture of data storage, but we are not planning to make any
distinction between some kind of ” primitive” data types and objects.

e NoneType: A constant that would hold the value None, and that would be used when a
item is undefined. The complete behavior of that type has yet to be defined. Notably, we
still have to determine whether users are able to define objects with a undefined value.

o Numeric types: int for signed integer values, bool, to hold True or False values, and float
for signed floating-point values. The length of these types would probably be 1 or 2 bytes.
(Python’s integers have unlimited precision®, so this will be a departure from the original
language.)

e Sequence types: tuple to store immutably a list of data objects.

o Text sequence types: str to store a list of characters. We are not quite sure yet whether
we should allow for Unicode support or stick to ASCII.

Static Typing

In contrast to Python, our language would be statically typed. (For a discussion on dynamic
typing, see the Section ”Potential add-ons”) There are multiple levels of dealing with static

typing:
e The most constraining way would be to force the users, as in Java or in C, to declare the
type of their variables next to them. This would give something like this:
int variable = 4. To us, that seemed too constraining, and pretty remote from the
notably relaxed Python syntax.

e Instead, we considered that, as long as users have to initiate their variables when they
declare it, we could infer the type of the variable at declaration. (We may be wrong on
that, but it seems to us that even strongly statically typed languages such as OCaml do
not require the users to declare the type at declaration-time.) This would be equivalent
to putting the equivalent of a C++ auto identifier in front of every variable declaration.

e More problematic is whether we should compel users to declare the types of the arguments
and output of their functions. We have decided to do so here, (see subsection ”Misc.”)
although we consider as a possible add-on to infer the types of these arguments and
outputs. (See Section ”Potential add-ons”)

® URL: https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Operations
o Truth Value Testing: and, or, not
e Comparisons:

— == and ! =, to check the equivalence of two objects (same value),
— is not and is, to check the equality of two objects (same memory address),

— <, <=, >, >= to rank objects
o Arithmetic:
— +, —, %, /, % — integer operations,
- +., —., *., /., — floating-point operations
Control Flow
e Branches: if, else if, else
e Loops

— while — Behave like one would expects, repeating the loop as long as the condition
is still met

— for — This loop would be implemented differently than in Python. Since we do not
have native range data structures, if a user wants to loop over a range of number,
the syntax will be for i in 1..10 instead of for i in range (1, 10). A user
can also iterate on a tuple. (We discuss the possibility of making iterators for some
objects in Section ”Potential Add-ons”.)

Misc.

Some other previously undiscussed aspects of the programming language basically copy Python.

e Function declarations follow the same model as Python, with the keyword def, with the
exception that types are explicitly mentioned. The syntax of type declaration is fol-
lowing the model of Python Static Typing Checker mypy®: def function-name([type:
arg-name] -list) -> type.

e New lines indicate the end of a statement.

e We would give users the ability to print strings, via a print statement (as in Python
2) or function (as in Python 3). In the following examples, we assume a Python 2-like
statement.

Sample Examples

Summation

5 URL: http://mypy-lang.org

http://mypy-lang.org

def sum(int: x) —> int:
if x ==
return x
else:
return x + sum(x — 1)

GCD

def gcd(int: x, int: y) — int:
if y ==
return x
else:
return gcd(y, x % y)

Hello, World

def hello() —> None:
output = "hello, world!"
print output

Iteration

numbers = (1,2,3) # Tuple definition
for number in numbers:
print number

Potential add-ons

This section exists because we are unsure about the feasibility of certain features. Instead of
producing a half-backed, unrealistic proposal, we have made the choice to list potential paths
for us to enrich the language. We have tried to assess as much as we could the utility and
the feasibility of these different features. We will, however, need the instructors’ help to decide
which paths, if any, to follow. In order to clarify this section, we have separated the different
ideas into broad categories.

Adding a paradigm to Python
Class and object management

Python has a significant object management portion. It would therefore be useful to implement
some parts of it. Here are multiple existing Python features that could be implemented. These
features are ranked in the order of difficulty, and, in general, except for inheritance, we assume
that a feature cannot be implemented without having the features listed directly above in this
list.

o Attributes: The ability to create a class with attributes. (For instance, a 3D vector would
have attributes z, y, z.) A thing that Python enables but that would apparently be
complicated to do in LLVM is to add attributes on the fly, meaning outside of the scope
of the class definition. Therefore, we may want to skip that.

e Initializer: The ability for users to write __init__ functions. A more complicated ques-
tion would be whether we could implement both normal initializers (__init__()) and copy
initializers (__init__(other-object)).

e Object Functions: The ability for users to write functions that are attached to an instance.
More complicated would be to implement some common function decorators:

@classmethod (for shared methods that have the instance as the first argument),

@staticmethod (for methods that do not have the class or the instance as first argu-
ment),

— @property (for read-only methods)
— @[attr-name].setter (for methods that set the value of a specific attribute)
@[attr-name].deleter (for methods that delete a specific attribute, which would be)

This would be indeed nice perks to have, but we are worried about the level of entropy
that it would incur.

e Inheritance: Inheritance in Python mainly exists by subclassing classes (put another way,
extends it). We know that inheritance is a major hurdle to implement in LLVM, so we
might not be sure that it is necessarily a good idea to implement.

e User defined default functions: The ability for users, as in C++, to modify some functions
that are common to each members, such as the addition operator (__add__), the conversion
to boolean (__bool__), iterator functions, etc. That would require us to not only define the
functions for default types, but also taking into account cases in which these functions are
not defined for some classes. This would probably be too much of a difficulty.

Functional programming

Python enables users to do some kind of functional programming. Functions are first-class
objects in Python, so we could think about enabling that. Multiple functional programming
languages have been written in LLVM, however we do not yet know how feasible this is.

Disparate advanced features

e Other (mutable) types: complex, list, range, dict. We have got to confess not to grasp
fully the implications of mutability in LLVM. That being said, it seems clear that it is,
according to the LLVM documentation itself, a very fastidious’ feature to implement.

e Other control flow operations: break, continue. This does not seem very complicated to
implement, however we are weary of overstuffing the language.

e (lasting. This would probably be very useful, although it may require to implement bitwise
operations (in Python: >>, <<, |, &, compl). It would also enable us to implement
arithmetic operations that are closer to vanilla Python. For instance, the / operator
could output integer or floating-point results depending on the arguments.

" URL: http://llvm.org/docs/tutorial /LangImpl7.html

http://llvm.org/docs/tutorial/LangImpl7.html

e String formatting. We were thinking of something under the format:

z = "This string is comprised of %s and %s" % (x,y)
or something closer to concatenation:
z = "This string is comprised of " + x + " and " + y.

In the later case, just the implementation of the add operation to strings could be sufficient.

Features that do not exist in Python

e Type detection across the language. We have said earlier that the minimal language we

could do would be strongly statically typed, and would detect the type of an object at
declaration time. However, the types of argument and output data of functions would have
to be declared. We could think of removing this declaration by automatically detecting
the types of these arguments and outputs. This has been done by multiple languages,
including OCaml, and even though the Hindley-Minler type system could be of great use
here, none of us has sufficient experience to implement that right away.

Multi-threading — Although there are Python modules for multi-threading®, they are,
from what one of the TAs told us, pretty bad and inefficient. LLVM apparently implements
multi-threading pretty easily, and therefore adding good multi-threading could be a good
addition to the language.

Ideas that seem far-fetched to us

These ideas seem very difficult to implement. Since we know that we may underestimate their
feasibility, we still wish to mention them here.

o An equivalent to raw_input. The idea, here, is to have some kind of prompt function that

would get user input. This would have significant dynamism to the language. However,
there are multiple challenges to this. One, we had the impression, after browsing the Web
to find ways to express user prompt in LLVM, that the implementation of that feature
is fairly system-dependent. Two, one enormous challenge of user input is input security,
and, even though our language would have a fairly small scope, we probably would not
have time to spend crafting even basic input security features such as type detection.

Dynamic typing. Python is dynamically typed, and this provides a great level of comfort
to the user, who does not have to think about the types of the variables it declares. The
issue, here, is LLVM basically allows programmers to implement dynamic-typed languages
only if they are ready to die”. It seemed way out of the scope of the class.

it

8 URL: http://www.tutorialspoint.com/python/python_multithreading.htm
9 URL: http://stackoverflow.com/questions /6833068 /why-is-llvm-considered-unsuitable-for-implementing-a-

http://www.tutorialspoint.com/python/python_multithreading.htm
http://stackoverflow.com/questions/6833068/why-is-llvm-considered-unsuitable-for-implementing-a-jit

