PAL : PDF Automation Language

Programming Languages and Translators - Spring 2016
Prof. Stephen Edwards

Anshuman Singh as4916@columbia.edu
Diksha Vanvari dhv2108@columbia.edu
Vinay Gaba vhg2105@columbia.edu
Viral Shah vrs2119@columbia.edu



Introduction:

Portable Document Format (PDF) is the file standard for the electronic
exchange of documents. According to estimates by Adobe executives, there
might be up to 25 trillion PDF documents existing in the world. The reason for
its popularity is its platform-agnostic behaviour of passing and sending
information that won't be skewed or altered. Our aim is to expand the range
of operations performed on this popular data source through the means of
PAL. There are many solutions available which are similar in nature to PAL but
very often they do not fulfill the exact functionality as needed and are
generally complicated, which requires a learning curve. We intend to simplify
these interactions with PAL while at the same time also enable powerful
operations which can fulfill operational needs.

Language

The PAL compiler will be written entirely in OCaml. The compiler will convert
the PAL source code into equivalent JAVA code, that eventually will be
compiled by the Java compiler and executed through the Java Virtual

Machine. This will ensure a high portability on various platforms, even
handheld and portable ones.

. : PAL Compiler + iava files i Java Compiler
l l .pal source files —— (palc) | E— (javac)
EDE] « Executable Code - [RLCIICCANN = -classfiles
‘ (Jvm) (bytecode)

We will be using the following libraries to carry out PDF operations after the
code has been compiled down to Java:

- Apache PDFBox



IV.

- iText
Proposed Use Cases

Create PDFs from text files.

Extract text from an existing PDF file.

Merge multiple PDFs into a single PDF.

Edit PDFs at a page level to generate PDFs with pages added,

removed or swapped.

e. Split an existing PDF file into multiple PDF files, separated at specified
page numbers or specified intervals.

f. Read a dataset from a data source (relational database) to be
represented as tables in the resultant PDF.

g. Generate statistical representations from queried datasets to be
represented as charts in the resultant PDF.

h. Advanced use cases can be supported via libraries written in the

proposed language using the existing language features.

oo oo

Language Features

a. Comments
1. # must precede single line comments.

b. Variable Declaration

1. <identifiername> : type
2. <identifiername1>, <identifiername2> : type

c. Primitive Data Types

Data Type Example
boolean booleanVariable : boolean = true;
int intVariable : int = 42;
char charVariable : char = 'c’,
string stringVariable : string = “Hello
World!";




float floatVariable : float = 42.0;
pdf pdfVariable : pdf;
blob blobVariable : blob;
dataset datasetVariable : dataset;
page pageVariable : page;
list listVariable : list type

d. Operators : Operators will be overloaded and perform the following
functions:

1. Operator '+
@® pdf3 = pdfl + pdf2;

Merge the pages of pdfi and pdf2 to form a new pdf pdf3.
@® pdf2 = pdfl + pageN;

Add a new page at the end of pdfi to form a new pdf pdf2.
@® page3 = pagel + page2;

Merge the blobs of page1 and page2 to form a new page
pages.

2. Operator -
@® int n = 1;
pdf2 = pdfl - n;

Removes page1 from pdfi to form a new pdf pdf2.
3. Operator '/’
@® int n = 2;

listl : list = pdfl / n;

Splits a pdf at the specified integer page number. Returns
3




a list of two pdfs, with pdf listil1] consisting of the first 'n’
pages and pdf list[2] consisting of the remaining pages.

4. Operator %'

@® int n = 3;
list: listl = pdf % n;

Splits a pdf into multiple pdfs of ‘n' pages each. Returns a
list of pdfs each of 'n' pages and the last pdf in the list
consisting of the remainder pages.

5. Operator ‘<>’

e. 170

@® int p1 = 1;
int p2 = 2;
pdfl(pl<>p2);

Reorders the pdf by swapping the p1 and p2 pages.

print s : string;
Prints the string to the output stream.
scan s : string;

Reads as input a string from the input stream.

f. Functions : The entry point into the code is through the function start().
Other functions supported by the language are:

1.

split(pdf, int , int) : 1list;

Returns a pdf with pages between the two page numbers
inclusive.

save(pdf, string , string):int;
Saves all the changes made to a given pdf. Writes the changes
to the existing pdf or creates and writes a hew pdf with the given



author name.
3. createBlob(string, string) :blob;

Creates and returns a blob from the given location of a text file
and assigns the font value of the particular blob.

4. createPage(list) : page;
Creates and returns a page from a given list of blobs.

5. createPDF(list) : pdf;
Creates and returns a pdf from a given list of pages.

0. createDataset(string, string) : dataset;
Creates and returns a dataset by connecting to a data source
using the connection string and the query supported by the data
source.

7. createChart(dataset, string, string) : blob;

Creates and returns a blob with the given chart type and chart
title.

V. Programming Features

a.

If Loop

if (<condition>) then {
<statementl>
<statement2>

} else {
<statement3>
<statement4d>

}

If the condition is true, then it executes the statements in the first block
as limited by the {I' parentheses, else it executes the statements in the



second block as limited by the ‘{I' parentheses.

. For Loop

int n = 10;

for (int i = 1; i <= 10; i++) do {
<statementl>
<statement2>

}

While the condition mentioned by the second expression is true, the
loop continues iterations, each time executing the statements in the
block following ‘do’ limited by the {I' parentheses.

. While Loop

int 1 = 1;

int n = 10;

while (i != n) do {
<statementl>
it++;

}

While the condition mentioned by the expression is true, the loop
continues iterations, each time executing the statements in the block
following ‘do’ limited by the ‘{I' parentheses.

. Main Function

main() : int {
<statementl>
<statement2>

return 0;

}

Every program must have a main function. The program starts
execution from the main function. On successful execution, the main
function returns an integer value as specified in the return statement,
else it returns -1.

. User Defined Functions

function_name (parameter : parametertype) : returntype {
<statementl>



<statement2>

return result;

A user defined function is represented by the above syntax. It consists
of the function name followed by the function parameters and finally

by the function return type.
VI. Example Program

a. Reading from a text file and writing to a pdf

main(){

#Creating blob from text file stored on local drive
textBlob : blob = createBlob("/path/test.txt","fontName.ttf");

#Creating a list variable and adding a blob to it
blobList : list blob;
blobList += textBlob;

#Creating a page and passing a list of blobs
pagel : page = createPage(blobList);

#Creating a list variable and adding a page to it
pagelList : list page = {pagel};

#Creating a pdf variable and passing a list of pages
pdfl : pdf = createPDF(pagelList);

#Saving pdf to given file path
save(pdfl, "path/filename.pdf");

}

b. Creating a pdf from the dataset returned by running a SQL query

main(){

#Creating a dataset by running a SQL query



resultDataset : dataset = createDataset("connectionString","SELECT * FROM
TABLE_NAME");

#Creating a blob of type table
tableBlob : blob = createChart(resultDataset,"TABLE","Table Title");

#Creating a blob of type bar chart

chartBlob : blob = createChart(resultDataset, "BAR_CHART","Chart
Title","X Axis","Y-Axis");

#Creating a list variable and adding blobs to it

blobListl: list blob;

blobListl += tableBlob;

blobList2: list blob;

blobList2 += chartBlob;

#Creating a page and passing a list of blobs to render the table
tablePage : page = createPage(bloblListl);

chartPage : page = createPage(blobList2);

#Creating a list variable and adding a page to it
pagelList: list page = {tablePage,chartPage};

#Creating a pdf variable and passing a list of pages
pdfl : pdf = createPDF(pagelList);

#Saving pdf to given filepath
save(pdfl, "path/filename.pdf");

c. Page Manipulation operations on a PDF

manipulate PDF(pdfl : pdf, pdf2 : pdf){

#Appends pdf2 to pdfl and creates a new pdf
pdf3 : pdf = pdfl + pdf2;

#Saving pdf to given filepath
save(pdf3,"path/filenamel.pdf");



#Get a list of all pages in pdfl
pageListl : list page = getPages(pdfl);

#Appends only the first page from pdfl to pdf2
pdfd : pdf = pdf2 + pagelListi[1];

#Saving pdf to given filepath
save(pdf4,"path/filename2.pdf");

#Get a list of all pages in pdf2
pagelList2 : list page = getPages(pdf2);

#Appends only the first page from pdfl to the first page from pdf2
pdf5 : pdf = pagelist[2] + pagelistl[1];

#Saving pdf to given filepath
save(pdf5, "path/filename3.pdf");

}



