Data Processing Language

Weiduo Sun (ws2478)
Miao Yu (my2457)
Baokun Cheng(bc2651)
Sikai Huang(sh3518)
Aman Chahar (ac3946)

Language name using initials: - BMWSA

Introduction
motivation

With the advent of Big Data era, file operations and data parsing has become more crucial.
There is a need for a language that can perform more complex operations not only taking less
time to process but also making it easy for programmers to write an efficient data processing
application with minimal effort. Even simple algorithms like sorting on large files can take huge
time. There are lots of languages like Python, R that are becoming popular in data processing
domain as they let users perform complex operations with minimal effort. But being very
high-level languages they tend to perform poorly (less than optimal) in spite of better
processors. In many domains like Finance, stock markets trading etc. low level languages like
C/C++ are still used where time plays crucial time for their business.

We want to develop dedicated language that has easy syntax like python and gives efficient
performance. Abstraction of files operations and optimized data processing will allow people
without much computer science background to easily maintain the data they need. It can be
extended to incorporate many optimizations making it suitable for both efficient file and data
processing, computing and coding.

Language description

Data Processing language is designed to handle complex file operations and data parsing
implementations. We provide easy I/O operations for handling multiple files together with
functions like merge, split, copy, write etc. that requires either high level language or very
lengthy/cumbersome low level language syntax and complexities. Most file operations involve
some of the data processing and thus, we provide flexibility in our language to do them with
ease. As most of the reading and writing into files are done line-by-line we have designed our
language to handle these operations easily by dedicating data types like Line, Para etc. that
specifically handle chunk of data together. For the scope of project we are focusing on text files,
as these are one of the most common operations done by any useful program. Similar to most
of the mainstream languages, we primarily support imperative programming. Syntax is made

similar to C/C++ that will be compiled to LLVM code. Extension of the language would be .dp

and other details are explained in the following sections.

Some common functionalities:

—_—

Splitting of a file into 2 or more files

)
2) Merging of two files in one single file
3) Copying some lines from one text file to another file (by line number)
4) Deleting some lines a file (by line number)
5) Deleting/copying some lines based on query term
6) return size of a file(line), number of letters and size of a line(column)
Data types:
Keywords Description
int 32-bit integer
char character
String array of characters that end with \x0
Line Line represented in a File
File operations generally require reading line
by line
para a collection of <File, int, int>
float float number
File file handle
Operators:
Symbol Description
= assign
+,-%/ corresponding math operators
++ - increment/decrement by one

% modulus operator

==><>=<=I= comparison operators

string identifier

i character identifier

O order enforcement operator

1 index accessing

<> specify elements in collection

| Combine results

1l Comment everything in that line following //
==l Multiple lines comment

Examples of declarations:

int a; // declare an integer named ‘a

€q)

int function k(File b, String c)

// Code in function

return x; // return the value you want

end

/* declare a function ‘k’ which takes File b and string c as its parameters and the

function returns an integer.*/

declare Collection<types> //initialize a collection of a specific type

Library Functions

Function signature

Syntax

Description

open(String,String)
returns File pointer

File a = open(“abc.txt”)

Opens the file in read mode by
default. Modes w, a are available
for write and append

readline(File)
return String or EOF

String line = readline(FileA)

Reads a line from previous location
of file pointer

write(File, String)
write(File, para)
write(File, collections<line>)

write(FileA,”Write this down”)

Takes arguments as file and String
that has to be written. If it is para
(paragraph type) containing starting
and end line number it copies

complete segment. If collection of
lines is given as argument, then
only those lines are copied

size(File) int totalLines = size(FileA) Returns number of lines in the File
Returns int
split(File, int) Collections<File> files = Returns file pointers to two or more

returns two file pointers
(Can be extended to splitting
multiple files)
split(File,array)

split(FileA, 10)

files containing content as
requested by user

merge(File,File)
merge(Collections<File>)
merge(para, para)

returns merged file pointer

File output = merge(FileA,
FileB)

Merges the two files and returns
file pointer to new file. It can also
accept collection of files that will be
merged or some sections of files.

delete(File, int)
delete(File, para)
returns new file pointer

File output = delete(FileA, 10)

Deletes particular line or section of
lines and returns the pointer to that
line

close(File)

close(FileA)

Frees the File pointer

search(file, String)
search(String, String)
returns collection<position>

int occurrences =
search(lineA, “compilers”);

It returns the line numbers where
keyword is present or position if
string is provided

copy(File)
returns File pointer to new file

File newFile = copy(FileA)

Makes a copy of file and returns the
pointer to it

save(File, String)

save(FileA,”output.txt”)

Save the current file on disk with
second argument as file name

Custom Functions

Custom functions can be defined using C type syntax
return_type function_name(arguments)

We also (want to) incorporate function overloading concept that allows same function name with
different type of arguments. Ability to pass variable parameters can be done using by passing

array or collection.

Functions are called by using call function_name(arguments)

Additional Keywords

declare : To declare any variable without the need of assignment and initialization

call : To call the function following this keyword

end : Used to mark the end of a block. For example end of control statements, function
definitions etc.

Collections<type> is similar to C++ vectors or ArrayList in java that allows multiple sized arrays.
It can contain any type of elements but must be declared before. It contains functions like add,
size, insert etc.

control flow:

/IComment (single line)

/* start of the block comment
*/ end of the block comment

Il'if else
if expression
statement
else
statement
end

Il'if

if expression
statement

end

/I for loop

for initialization:termination:increment
statement

end

/I for each loop

for element in elements
statement

end

I/l while loop
while expression

statement
end

Code Example

1. Program to create a new file with lines that contains keyword "Hillary Clinton" &
"Victory" in first file and "Donald Trump" & "Defeat"” in second file.

//Read file 1 and file 2
File fileA = open("Democratic_IOWA_cacuses_Analysis.txt")
int sizeA = length(fileA) //Compute number of lines

File fileB = open("Republican_IOWA cacuses_Analysis.txt")
int sizeB = length(fileB) //Compute number of lines

//Para dataype that stores file pointer, start line number and last line number
Para parl = <fileA, 0, sizeA>
Para par2 = <file2, 9, sizeB)

//Collection is like vectors/ArraylList that can append any type
// | (Pipe) operation can combine results given they return same type

Collection<Lines> firstFile = search(parl, "Hillary Clinton") | search(parl, "Victory")
Collection<Lines> SecondFile = search(par2, "Donald Trump") | search(par2, "Defeat")

// Merge combines two files which takes input as either <fileName, collection of lines>
or <filename, paragraphs>
File output = merge(<fileA,firstFile>, <fileB,SecondFile>)

//Save the output into output file
save(output, "Output.txt")

2. Program to implement TF-IDF algorithm (Information retrieval)

String dir_path = "folder_path"
//Initialize keyword is used to initialize any data type

declare Collections<para> files

// For loop to iterate over contents
// dir library function to get all files in a folder
for file in dir(dir_path)
files.add(<file, 0, size(file)>)
end
// call keyword followed by function name calls that function
float tf = call compute_tf(files[1],"Compilers")
float idf = call compute_idf(files,"Compilers")
print(id * idf) // print on console

// similar to C/C++ syntax of defining function

float function compute_tf(par docl, String keyword)

Collection<Lines> keyword lines = search(docl,keyword);
int occurrences=0
for line in Lines
occurrences = occurrences + search(line,keyword).size();
end
return occurrences/words(docl)
end

float function compute_idf(Collection<par> docs, String keyword)
int occurrences =0
for doc in docs
if doc.contains(keyword)
occurrences++
end
//Math library to compute log/similar operations
return Math.log(docs.size()/occurrences)
end
end

