Caml tail

Caml Light, but smaller and less useful

Language Reference Manual

Jennifer Lam
Fiona Rowan
Sandra Shaefer

Serena Shah-Simpson

March 2, 2016

Table of Contents

1. Lexical Elements

1.1. Separators

1.2. Phrases

1.3. Comments

1.4. Identifiers

1.5. Integer literals

1.6. Floating point literals

1.7. Character literals

1.8. String literals

1.9. Keywords and special symbols

2. Values
2.1. Lists

2.2. Constants
2.3. Functions

3. Type expressions

3.1. Type variables
3.2. Parenthesized types
3.3. Function types

4. Patterns

4.1. Variable patterns

4.2. Alias patterns

4.3. Parenthesized patterns
44. “Or” patterns

4.5. Constant patterns

5. Expressions

5.1. Simple expressions
5.2. Control constructs
5.3. Operators

6. Standard Library

6.1. General
6.2. List operations

7. Sample Code

7.1. Rec function

7.2. Pattern matching

7.3. Nested functions and anonymous functions
7.4. Standard library use

Introduction

Caml tail is a functional programming language that is based on OCaml -- without the O. Cam/
tail will be strongly typed (with a smaller set of primitive types). It will support basic arithmetic,
pattern matching, function definitions both imperative and recursive, anonymous functions, and
nested functions. Our language will compile to LLVM.

1. Lexical Elements

This part of the manual describes the lexical elements of fail.

1.1 Separators

Horizontal tabs, newlines, carriage returns, and whitespace separate tokens. They are
otherwise ignored. Double semicolons delineate phrases. A single semicolon is used as a
sequencer of 1) multiple expressions, or 2) list elements.

1.2 Phrases

phrase:
expr
| value-definition
| type-definition

A phrase is defined as an expression, a value definition, and a type definition. It is always
terminated by double semicolons.

1.3 Comments

Comments are ignored, and are enclosed by (* and *).

1.4 Identifiers

ident:
letter {letter | 0...9 | _}*

letter:
A.Zla..z

Identifiers are a sequence of characters beginning with a letter.
1.5 Integer literals

int_literal.

[-]{0..9}+

Integer literals are a sequence of digits in the decimal system, optionally beginning with a minus
sign to signify negative numbers.

1.6 Floating point literals
float_literal-

[-] {0...9}+ . {0...9}+

Floating point literals are a sequence of digits with a decimal point at the beginning, end, or any
other intermediary position within the sequence. An optional minus sign at the beginning
designates a negative number.

1.7 Character literals

char _literal:
(a...zA...2)

| VA In[tib|r)"
| “\(0..9) (0...9) (0..9) "

Character literals are single letters, digits, or symbols enclosed by two single quotes.

1.8 String literals

String literals are sequences of letters, digits, or symbols enclosed by two double quotes.
Strings can be concatenated via a carat: “O” * “Caml, guys!” evaulates to “OCaml, guys!”

1.9 Keywords and special symbols

Keywords are special identifiers that are predefined by the language, and cannot clash with
user-defined function or variable names. Below is the list of keywords in our language:

int char string float unit bool

if then else let match with

fun func rec true false type

in as abst open

The following sequence of characters are special symbols:

| — () ->) = [
] == | = < <= > >= && | |
not + - * / mod + - *
/ A ‘ « ’ 5 > >=
< <=
2. Values
2.1 Lists
typedecl list :
[item; item; item;...] | [item]| []
item:
int
| float
| char
| string

A list is designated by opening and closing square brackets. All items in a list must be literals.
The literals must be of the same type (no type mixing or tuples).

2.1.1 List Operators

Prepend to a list is denoted by double colons. For example, (new_item :: existing_list) prepends
new item to an existing list.

2.2 Constants

The following table shows constant values.

false the boolean false

true the boolean true
unit the void value
L] the empty list

2.3 Functions

Functional values are mappings from values to values.

3. Type expressions

3.1 Type variables

These are variables that are bound to types, which may be user defined. They take the following
format: typedecl identifier = value, | ... | value,

3.2 Parenthesized Types

A parenthesized type represents the same type as are inside the parentheses.

3.3 Function Types

The expression type, -> type, represents the type mapping of a function, which takes input of
type, and outputs type,.

4. Patterns

4.1 Variable patterns

These patterns consist of identifiers and match any value, thus binding that variable to said
value. The wildcard symbol _ also matches any value, but there is no binding involved.

4.2 Alias patterns

These are patterns bound to identifiers, and are created in the following format: pattern as
identifier. If a value matches this pattern successfully, the value is bound to the identifier.

4.3 Parenthesized patterns

A pattern enclosed in parentheses matches the same value as just that pattern would. Type
constraints can be placed on patterns in this way as well, in the following manner: (pattern :

type).
4.4 “Or” patterns

Or patterns are represented by two patterns separated by the symbol |. A value matches an “or”
pattern if it either of these patterns.

4.5 Constant patterns

These patterns consist of constants, and only match values that are equal to those constants.

5. Expressions

5.1 Simple expressions

5.1.1 Variables

An expression consisting of a variable always evaluate to the value bounded to that variable.

5.1.2 Parenthesized expressions

An expressions inside parentheses evaluate to the value of that expression.

5.1.3 Function abstraction

Here, we use the keyword fun to match a set of values to a set of patterns. If the set of values
matches the ith row of patterns, then the ith expression is evaluated -- that is, if the value v
matches the patterr? in row i, expr; is evaluated. The first row of patterns matched is the one
whose expression is evaluated. These statements occur in the following format:

fun abst
pattern’ ... pattern™ -> expr,
| pattern’ ... pattern™ -> expr,

| pattern’ ... pattern™ -> expr,

| _ -> exXpryepmun

All rows must have the same number of patterns. If each row has only one pattern, use the
keyword match instead of fun (see section 4.23). A default expression must exist in the case
that the set of values does not match any of the given rows of patterns.

5.1.4 Function application

The expression expr, expr, ... expr, evaluates the expression expr, to expr, . expr, must
evaluate to a functional value, which is applied to the values that follow.

5.1.5 Local definitions

We bind variables locally using the following formats:
let pattern, = expr, and ... and pattern, = expr, in expr

Each of the indexed expressions are evaluated, and if their values match their corresponding
patterns, then expr is evaluated as the value of the entire let statement. If matchings succeed,
expr is evaluated in environment enriched by bindings performed during matching(s), and the
value of expr is returned as value of whole /et expression. Local variables defined in the
preceding pattern matches can be used in the evaluation of expr.

Alternatively, we may bind recursive definitions of variables locally with the following format:

let rec pattern, = expr, and ... and pattern, = expr, in expr

5.1.6 Function definitions

Anonymous functions have variable input specified within parentheses. The last expression
evaluated is the functional return value of the function, and is immediately applied to the
parameter values specified after the function body in parentheses. The type of value, must
match the type of identifier. Anonymous functions are defined in the following way:

type,...., fun (type, identifier,, ..., type, identifier,) ->
expr,;

expr,, (* the last expr returns a value of type,,,,..”) (value,, ..., value,)

return
Declarative functions can be bound to an identifier. The last expression evaluates to the return
type, and the functions have the following format:

let type,.,,., function_name (type, formal_arg,, ..., type, formal_arg,) =
expr,;

expr,, (* the last expr returns a value of type

%)
return

Recursive functions use the rec keyword, and have the following format:

let rec type,.,,.
expr,;

function_name (type, identifier,, ..., type, identifier,) =

function_name(ident,, ident,, ..., ident)
5.2 Control constructs

5.2.1 Sequence

The expression expr, ; expr, evaluates expr, first and then returns the value of expr.,.

5.2.2 Conditional

The expression if expr, then expr, else expr, evaluates the first function, and if that function
evaluates to true, it evaluates the second function and returns its value. Otherwise, the third
function is evaluated and its value is returned. The else part may be omitted.

5.2.3 Case Expression

The following expression matches expr with the following sequence of patterns. If it matches
one of the patterns, its corresponding expression is evaluated, and the entire match expression
evaluates to its value. If expr matches multiple patterns, the first pattern matched is considered
the successful matching.

match expr
with pattern, -> expr,
| pattern , -> expr,

| pattern,, -> expr,
| _ -> eXPryeraun

5.3 Operators

The following are operators within boolean expressions:

== infix Equality test.

= infix Inequality test.

< infix “Less than” integer test.

<= infix “Less than or equal to” integer test.

> infix “Greater than” integer test.

>= infix “Greater than or equal to” integer test.

not prefix Boolean negation.
§&& infix Test if both expressions are true.
| infix Test if at least one expression is true.

The following are numerical operators:

+ infix Integer addition.

- infix Integer subtraction.

- prefix Integer negation.
infix Integer multiplication.
infix Integer division.

mod infix Integer or float modulus.

The following are string and list operators:
A prefix String concatenation.

The prepend operator is a list operator, and consists of ::. The expression expr,
evaluates to the list with expr, as its head and expr, as its tail.

6. Standard library

The standard library can be included using the open keyword.

;1 expr,

6.1 General
print_char Prints a character to standard output.
print_string Prints a string to standard output.
print_int Prints an integer to standard output.
print_float Prints a float to standard output.
random() Generates a random float between 0 and 1.
int_to_string Converts integers to strings.
char_to_string Converts characters to strings.
float_to_string | Converts float to strings.

6.2 List operations

len List.len returns the length of a list.
rev List.rev returns a new list with the items of the original list reversed.
hd List.hd returns the first element of the list.
tl List.tl returns a list consisting of all elements of the original list
except the head.
nth List.nth returns the nth item.
iter List.iter f [a1; ...; an] applies function f in turn to a1; ...; an.
map List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the
list [f a1; ...; f an] with the results returned by f.
fold_left List.fold_left function accumulator [item1; item2; ...; itemn] is
equivalent to function (...((accumulator item1) item2) ... itemn)
fold_right List.fold_right folds the opposite way as List.fold_left.
concat List.concat [[a1;...; an];[z1;...; zn];[]] concatenates a list of lists. The

elements of the argument are all concatenated together (in the
same order) to give the result.

7. Sample code

7.1 Rec function

let rec int fib (int n) =

if n=1 then 1;

else

if n=2 then 1;
else fib(n-1) + fib(n-2);;

7.2 Pattern matching

let rec int fib (int n) = match n with
1 ->1
|2 -> 1
|_ -> fib(n-1) + fib(n-2);;

let int gcd(int a, int b) =
let rec int gcd_helper(int c, int d, int r) =
match r with
o —>d
| _ -> let ¢ = c % d in let gcd_helper(d, c, % C)
in gcd_helper(a, b, a % b);;

7.3 Nested and anonymous functions

let int x = 5 1in
(int fun (int y) -> vy + x) X33

(* This line evaluates to ((function x -> x+x) 5), which returns 10

*)

7.4 Standard library use

(x Demonstrating a hello world program x)
let unit hello_world() =
let string yo = “Hello “;
let string dude = “World!”;
print_string (yo " dude);;

hello_world();; (* Prints Hello World! to the screen x)

(* Demonstrating list operations x)

let unit hello() =
let char gniteerg = [‘0’; “‘1’; ‘1’; ‘e’; ‘H’];
let char greeting = List.rev gniteerg;
List.iter print_char greeting;;

hello();; (* Prints Hello to the screen x)

