
PlOtter

Language Reference Manual

Ibrahima Niang in2190

Ranjith Kumar Shanmuga Visvanathan rs3579

Sania Arif sa3311

7th March, 2016.

1



Contents

1 Introduction 3

2 Lexical Conventions 3
2.1 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 White space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Types 4
3.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Expressions 5
4.1 int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 num . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 bool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.5 list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.6 hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.7 point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.8 Arithmetric operators: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.9 Relational and logical operators: . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Statements 7
5.1 Declaration & Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.4 Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Control Statements 8
6.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Scope 10

8 Functions 11
8.1 Function Declaration & Definition . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Function Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.3 Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

9 Sample Program 13

2



1 Introduction

plOtter is a data manipulation language built on the principles and appreciation of a mini-
malist aesthetic. The goal of plOtter is to provide a means for users to design and implement
their own plots to visualize data, that would otherwise be done by rigid, automated software
(such as Microsoft Excel). Our language will simplify charting maps through domain-specific
types and operations. The users can build their custom graph templates using our language
and can reuse the template to visualize different data points.
Very primitive examples could be building a bar-graph, histogram etc. Higher level exam-
ples could be drawing small album art, or other complex examples could be to visualize/plot
a binary tree, Gantt chart, etc.
Following is a manual that provides reference information for using plOtter. It describes the
lexical conventions, basic types scoping rules, built-in functions and also displays a sample
program and output.

2 Lexical Conventions

The lexical structure consists of the set of basic rules that define how to write programs
in plOtter. The normal token types are identifiers, keywords, operators, delimiters, and
literals, as covered in the following sections.

2.1 Identifiers

An identifier is a name used to identify a variable, function, class, module, or other object.
An identifier starts with a letter (A to Z or a to z) or an underscore ( ) followed by zero
or more letters, underscores, and digits (0 to 9). plOtter is case sensitive, lowercase and
uppercase letters are distinct.

2.2 Keywords

num string bool point
true false while for

if else then in
fn end break print
list int none return

2.3 Comments

Both single line and multi-line comments are supported.

Single Line #
Multi Line /* */

The pound or hash-tag symbol # is used for comment. Everything from the # to the end
of the line is ignored. It can be used for either single line comment multiple line comments
as follow:

#This is a single line comment

3



# This is also a comment
# And another comment over here
# but made of multiple lines

/* ... */ is used for multi line comments. Also, unlike OCaml multi-line comments cannot
be nested.

/* this is
an example of
multi-line comment */

2.4 Constants

false: The false value of the bool type.
true: The true value of the bool type.
none: The sole value of types none. It is used to represent the absence of a value.

2.5 White space

• Blank lines
A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is
ignored (i.e., no NEWLINE token is generated).

• Line statement
In plOtter, end of a statement is marked by a newline character

• Indentations
plOtter provides no braces to indicate blocks of code for function definitions or flow
control. Blocks of code are denoted by line indentation, which must be ended by end.
For example:

if true:
print “True”

end
else:

print “False”
end

3 Types

Our language supports the following data-types:

1. Primitive types

4



num 32 bit floating point number
int 32 bit number from -2,147,483,648 to 2,147,483,647
bool Boolean value

2. Non-Primitive or object types

point A bi-element tuple of type num
list List of num or string elements
hash Dictionary with num or string keys
string Chain of characters enclosed by double quotes

Note: Primitive data type ‘int’ is used to denote the indices of the non-primitive data types
list, hash and string.

Note: We do not have a primitive type ‘char’, and an index of a string points to a string of
length one.

3.1 Operators

Operators are listed in order of precedence. All operators associate left to right, except for
assignment, which associates right to left.

Arithmetic +, -, *, /, %, **
Comparison ==, ! =, <,>,<=, >=
Assignment =,+ =,− =, ∗ =, / =,% =, ∗ =
Membership in, not in
Binary &,∧, ‖,

4 Expressions

An expression is a combination of values, variables, and operators.

4.1 int

int a
a = 5
int b = 5

4.2 num

num a
a = 10.
num b = 10.

5



4.3 bool

bool a
a = false
bool b = false

4.4 string

string a
a = ”plOtter”
string b = ”plOtter”

4.5 list

int a = 1, 2, 3, 4, 5
int b = 1.0, 2.0, 3.0, 4.0, 5.0

a.append(6)[
1, 2, 3, 4, 5, 6

]
a.remove()[

2, 3, 4, 5, 6
]

a.removeAt(2)[
2, 3, 5, 6

]
a.at(0)
2
a.length()
4

4.6 hash

hash options = {“xAxis”: true,“yAxis”: true,
“xLabel”: “Time”,“yLabel”: “Celcius”,
“title”: “Temperature with Time”,“grid”: true}

4.7 point

point pMax = (10, 10)

4.8 Arithmetric operators:

2 + 3
5

6



num a = 5.0
num b = 3.0
a * b
15.0
14 % 3
2
22.0 12.0
1.8333333333333333

4.9 Relational and logical operators:

1 ≺ 2
True

23 == 45
False

34! = 323
True

True ‖ False
True

True&False
False

5 Statements

5.1 Declaration & Assignment

Declaration statements are to declare variables to use in the program. Assignment
statements are used to declare variables and initialize a value to a variable, or assign

a value to an initialized variable. They can be expressed in the following ways:

1. Type Name Variable Name = Value

For example:
num x = 3

string s = ”hello”

Note: Strings values are expressed by enclosing characters in double quotes.

2. Type Name Variable Name = Value1
Variable Name = Value2

7



For example:
num x = 3
x = 4.5

Note: An un-initialized variable will be initialized to the following:
num 0
string null
point (0,0)
list [ ]
hash { }

5.2 Break

The break statement causes termination of a looping control statement, and causes
control to be passed on to the successive statement after the loop ends. In case of
nested loops, the current loop (in which the break statement exists) is terminated,
and the other loops are still intact.
It is expressed simply as:

break

5.3 Continue

The continue statement rejects all the remaining statements in the current iteration of
the loop and moves the control back to the top of the loop. In other words, it returns
the control to the beginning of the loop. It is expressed simply as:

continue

5.4 Return

The return statement is used to exit a function, and it may optionally pass back an
expression to the caller. If required, the expression is converted, by assignment, to
the type of the function in which it appears. A return statement with no arguments
is the same as return None. It can be expressed as:

1. return expression
2. return

6 Control Statements

6.1 Conditions

The 2 forms of conditional statements are:

8



– if- else
This is of the form:

if expression
statements

else
statements

end

Note: The end indicates the end of the conditional block.

– if- else if - else This is of the form:

if expression
statements

else if expression
statements

else
statements

end

Note: The end indicates the end of the conditional block.

In both cases, the expression is evaluated, and if the condition is satisfied, the set of
statements associated in the block is executed. If none of the expressions’ result is
satisfied, the alternate set of statements associated with the else block are executed.

6.2 Loops

– while

This has the form:

while expression
statements

end

The expression is evaluated, and if the condition is satisfied, the set of statements
associated in the block are executed. The test takes place before each iteration
of execution of the statements, and the statements are executed repeatedly, as
long as the value of the expression remains satisfied.

– for

This has the following forms:

∗ for Initialize ; Condition ; Increment/ Decrement :
Statements

9



end
Initialization specifies the initialization for the loop. Condition specifies an
expression to test if the loop should continue. The loop is exited when the
expression is satisfied. The final part is typically an increment or decrement
operation to be made on the loop variable.

∗ for Type name = start ; end :
Statements

end
Here, start specifies the value where from to begin loop iteration. End is
the final part, i.e. till when the loop should continue. The value of the loop
variable will increment or decrement by 1, till ’end’ is reached.

∗ for start : end :
Statements

end
Here, start specifies the value where from to begin loop iteration. End is
the final part, i.e. till when the loop should continue. The value of the loop
variable will increment or decrement by 1, till ’end’ is reached.
The difference between this representation and the previous one, is that here,
there is no variable to use inside the loop block, unlike name in the previous
declaration.

∗ for variable in list :
Statements

end
Here, the loop iterates over a list, and goes through each variable present in
the list.

7 Scope

We have broadly 3 categories for scope of variables:

– Global Scope
These are for variables defined outside a function or control statement block, that
are accessible throughout the program. They exist throughout the lifetime of the
program and can be accessed inside any function or control statement block.

– Local Scope
These are variables that are declared inside a function or a control statement
block. They can be used only within the function or control statement block and
are prone to cause errors when accessed outside the block.
We define the end of a block using the end keyword.

10



– Function parameters
Formal parameters of a function are treated as local variables within the function
and take preference over the global variables inside the function.

8 Functions

Functions allow structure programs as segments of code to perform tasks that also can
be reused.

8.1 Function Declaration & Definition

Function declaration is done in the following format:

fn name of the function ( arguments ):
end

Here, arguments can be a set of arguments or no arguments. The function
definition does not convey anything about the return type of the function. Some ex-
amples are given below.

Examples :
Function to convert Celsius to Fahrenheit. It takes one argument and returns

Num type.

1 fn convertToCelc ius (num f ) :
2 r e turn ( f −32) /1 .8
3 end
4

Function with no argument, returning type string

1 fn getWelcomeString ( ) :
2 r e turn ”He l lo World”
3 end

8.2 Function Call

Functions are called in the following way. They are basically identified by their
function name and the arguments it has, to be sent. Error will be thrown if the number
of arguments during the call didn’t match the function signature. However defaulting
the argument values can be done, in such a case the passing arguments could be less.

A simple function call to the convert to Celsius function.
convertToCelcius(35.0)

Function with default argument values and calling them.

11



1 fn getWelcomeString ( s t r i n g welcome=”He l lo World” ) :
2 r e turn welcome
3 end
4

5 #Cal l i ng them with params − r e tu rn s ’Hi a l l ’
6 pr in t getWelcomeString ( ”Hi a l l ” )
7

8 #Cal l i ng without arguments − uses argument d e f au l t va lue ’ He l l o World
’

9 pr in t getWelcomeString ( )

8.3 Built-in functions

These are the functions our language provides. However, most of these can be written
by using the primitive blocks in plOtter.

Note : In all these functions and also the program all size/thickness units are
pixel and all color is 6 byte hex string Eg ”FFFAAF”.By default color is black.
Also if not specified in options default values are substituted.

line (point p1, point p2, hash options)
This function lets users draw a line from one point to another point in the SVG.

It takes in the starting point, the ending point and at last options like color size etc.
The options are thickness and color.

Eg. line((0,0),(10,10),”thickness”:10)
printXY (point p, string s, bool dir, hash options)

This function lets users print string in the SVG. The printXY funtion, takes as
argument point in the screen the point specifying the top right corner of the print,
the text to be printed, boolean dir, representing whether the string should be hori-
zontal(True) or vertical(False), and at last options like color size etc. The options are
size and color.

Eg. printXY((10,10),”Hello World”, true, ”size”:10)
rectangle(point p, num width, num height, hash options)

This draws a rectangle of width and height, starting from p, with options. The
options we are considering now are simple like, thickness(of the border), color(of the
border) and fill(boolean variable specifying fill should be done). If fill is true, addi-
tional option called fillColor is also required, if not specified default of black fill is used.

Eg. rectangle((10,10),5, 10,”thickness”:1, ”color”:”FFFFFF”,”fill”:false)
circle(point center, num radius, hash options)

This draws a circle with the given radius, with any given point as center.It takes
additional options as thickness, color and fill. If the the circle goes out of bounds, the
out of bound parts are neglected.The options we are considering now are simple like,
thickness(of the border), color(of the border) and fill(boolean variable specifying fill
should be done). If fill is true, additional option called fillColor is also required, if not
specified default of black fill is used.

Eg. circle((10,10),5, ”thickness”:1, ”color”:”FFFFFF”,”fill”:true,”fillColor”:”00FF00”)
barGraph(list data, hash options)

This draws a barGraph given the data and specified options. The options
include, num max-width, num max-height, num color (of the bar), xaxis(boolean rep-
resenting whether the axis should be there), bool yaxis, string xLabel, string yLabel,

12



bool grid(to have/not have grid lines) and string title (For example: padding, max
width, max height, etc.)

Eg.
hash options = {”xAxis”: true,”yAxis”: true,”xLabel”: ”Time”,”yLabel”:

”Celcius”, ”title”:”Temperature with Time”,”grid”:true}
barGraph([5,1,4,2,7],options)

We will have more functions, specific to each type of plot (For example: line plot, pie
charts, etc.) similar to the barGraph function, for the user to call.

The purpose of providing these built-in functions is to demonstrate the
power of our language, enabling the user to build his own custom func-
tions, as desired. Since most of these built in functions are written in
plotter

9 Sample Program

This is a sample program that gets data from a csv file, applies some options to the
data and plots the data in a bar-graph. We also supply sample code for the bar-graph
function, written in plOtter, which will be provided as an in-built function to the user,
to show the ability to build custom graphs/plots using our language.

1 # Function wr i t t en by user
2 fn convertToCelc ius (num f ) :
3 r e turn ( f −32) /1 .8
4 end
5

6 # Importing data from CSV
7 l i s t data = getDataFromAsListCSV ( ”data . csv ” )
8

9 # Data manipulat ions Converting Farenhe i t to Ce l c iu s
10 forEachDo ( data , convertToCelc ius )
11

12 hash opt ions = {”xAxis ” : true , ”yAxis ” : true , ” xLabel ” : ”Time” , ”yLabel ” : ”
Ce l c iu s ” , ” t i t l e ” : ”Temperature with Time” , ” g r id ” : t rue }

13

14 # Cal l i ng in−bu i l t f unc t i on ( which could a l t e r n a t i v e l y be implemented y
user )

15 barGraph ( data , opt ions )

Listing 1: Data-manipulation and Bar Graph Example

The output of the above code will be like something below.

�The function barGraph is built using primitive blocks and is provided as a built-in
function. However, its shown here to emphasize the power user can have for creating
his own graph.

1 #Bar Graph
2 fn barGraph ( l i s t data , hash opt ions ) :
3 num mx
4 point pMax , pad = (10 ,10)

13



Figure 1: Simple Bar Graph

5

6 #Apply Options s p e c i f i e d by user , i f not s p e c i f i e d , use d e f a u l t s
7 opt ions = applyOptions ( opt ions )
8

9 #Set t ing s i z e s e t by the user or tak ing d e f au l t
10 pMax [ 0 ] = i f ”xMax” in opt ions then opt ions . xMax e l s e 1080
11 pMax [ 1 ] = i f ”yMax” in opt ions then opt ions . yMax e l s e 1920
12

13

14 #Sca l i ng data to Fit on d i sp l ay approp r i a t e l y
15 mx = max( data )
16 opt ions . gap = (pMax [ 0 ] − pad [ 1 ] ) /( opt ions . barWidth∗ l en ( data ) )
17

18 f o r i in data :
19 r e c t ang l e ( ( s t [ 0 ] , ( pMax[1]−pad [ 1 ] ) ∗ i /mx) , barWidth , barHeight ,

opt i ons . barSty l e )
20 pad [ 0 ] += barWidth+gap
21 end
22 end

Listing 2: Snippet of code for in-built barGraph function in plOtter.

14


