
1	of	15

VLC	:	Language	Reference	Manual

Table	Of	Contents

1.	Introduction

2.	Types	and	Declarations

 2a. Primitives

 2b. Non-primitives

 - Strings

 - Arrays

3.	Lexical	conventions

 3a. Whitespace

 3b. Comments

 3c. Identifiers

 3d. Keywords

 3e. Literals

 - Integer Literal

 - Floating Point Literal

 - Boolean Literals

 - Character Literals

 - String Literals

 3e. Separators

 3f. Functions

 - Regular Functions

 - GPU Functions

 - Higher Order Functions

 -Map

2	of	15

 -Reduce

 3g. Casting

 -Primitive Types

 -Non-Primitive Types

4.	Syntax

 4a. Control Flow

 - If, Elif, and Else Statements

 -Ternary Operator

 -While Loops

 -For Loops

 4b. Scope

5.	Expressions

 5a. Arithmetic Operators

 -Traditional Arithmetic Operators

 -Array Arithmetic Operators

 -Scalar Array Arithmetic Operators

 5b. Logic Operators

 5c. Operator Precedence and Associativity

6.	External	Declarations

 6a. main function and Code Execution

 6b. import Statements

Introduction

VLC is a Python-like high level language for GPU(Graphical Processing Unit) programming

on Nvidia GPUs.

VLC is primarily intended for numerical computation, which can be performed orders of

magnitude faster on parallelizable GPU architecture than on traditional x86 architecture. VLC

is intended to provide convenient and safe access to the GPU’s computational power by

abstracting common lower level operations - for example, data transfer between the CPU and

the GPU - from the user.

3	of	15

Other functionality provided by VLC include built-in higher order map and reduce functions

that utilize the parallel capabilities of a GPU.

Types	and	Declarations

The VLC language has two data types: primitives and non-primitives.

Primitives

<primitive_type>	myVar	=	<value> declares a primitive type primitive_type called myVar with

value value

A primitive cannot be null.

Primitive Description

byte An 8-bit signed two's complement integer between -128 and 127

int
32-bit signed two's complement integer between -2147483647 and

+2147483647

float
Single precision 32-bit IEEE 754 floating point number with absolute value

between 1.4E-45 and 3.4028235E38

bool A Boolean true or false

char
16-bit alphanumeric character, valid escape "\" character, or punctuation

in the ASCII character set

Non-primitives

Declared but uninitialized non-primitives assume a null value. Non-primitives cannot be

declared null, but can only take on the null value if they have not been initialized.

Strings

Non-

Primitive
Description

string
A sequence that can be made of characters, valid escape "\" characters, or

punctuation, immutable.

string	myString	=	"This	is	a	string" declares a string with name myString and value "This

is a string"

4	of	15

Arrays

Arrays are objects hold a fixed number of primitives or non-primitives. All elements must be

values of a single type, unless otherwise specified for special cases.

Non-Primitive Description

<type>	[]	myArray 1-Dimensional array of type type

<type>	[][]	my2DArray 2-Dimensional array of type type

<type>	[][][]...[]	myArray n-Dimensional array of type type

For any array A, A[i][j]...[z] retrieves the element at the ith index of the first dimension, jth

index of the second, etc.

Array Declarations Description

<type>[][]	my2DArray	=

block(myArray,n)

2-Dimensional array created from myArray by

blocking every n-elements of myArray

<type>	[n]	myArray	=	{<type1>,

<type2>,<type3>...}
Initializes myArray with n user-specified type

<primitive_type>	[10]	myArray

=	{0}
Initializes myArray with 10 zeros

<primitive_type>	[10]	myArray

=	{*}
Initializes myArray with 10 random primitive_type

Lexical	Conventions

Whitespace

Whitespace refers to the space, horizontal tab, form feed and new line characters. White space

is used to separate tokens as well as determine scope. Other than in these uses, it is ignored.

WHITESPACE = ['	'	'\n'	'\r'	'\t']

Like Python, whitespace found after a newline in VLC denotes the scope of a statement. A

statement located within a scope of another statement should contain at least one recognized

delimiting white space character at its start.

delimiting white-space = ['	'	,	'\t']

See below for an example.

5	of	15

(Note i	=	i	+	1 is not aligned with if control statement, but begins several white spaces to

the right of the line. This defines i	=	i	+	1 to be in the scope of the if block) VLC allows tabs

and interprets them as four spaces.

Multi-line statements can be achieved through the use of the line-join character \, as shown

in the following example:

Comments

VLC comments follow standard comment conventions of C, C++, and Java.

// denotes single line comments.

/* and */ denote start and termination of multi-line comments.

Per C, C++, and Java comment conventions, comments cannot be nested within each other.

For example the sequence /*	/*	*/	*/ is not fully recognized as a comment. Only the

substring /*	/*	*/ is recognized as a comment.

COMMENT = '/'	'*'+	[^'*']*	'*'+	'/'	|	'/'	'/'	[^'\n']*

Identifiers

An identifier is a case-sensitive sequence of characters consisting of letters, numbers, or

underscore, and the first character in an identifier cannot be a number. Identifiers may not

take the form of reserved keywords.

ID = ['a'-'z'	'A'-'Z'	'_']	['a'-'z'	'A'-'Z'	'_'	'1'-'9']*

Keywords

int float char bool if elif else for while continue break return auto map reduce name def defg

string null import map reduce const

Literals

Integer	Literals

An integer constant is an optionally signed sequence of digits. An integer constant can take

the form of a byte or intprimitive. A byte primitive ranges from -128 to 127 and an int

ifif 	(i!=!= 0)::

				i	== 	i	++ 	1

�

ifif 	\\

(i== 0):: 	

				i	== 	i	++ 	1

�

6	of	15

primitive ranges from -2147483648 to 2147483648.

INT = [‘+’	‘-’]?[‘0’-’9’]+

Floating	Point	Literals

A floating point constant is denoted by an optionally signed integer, a decimal point, a fraction

part, an "e" or "E" and an optionally signed exponent. A floating point constant can take the

form float. A float primitive's absolute value ranges from approximately 1.4E-45 to 3.4E38.

Either the fraction part or the integer part must be present, and either the decimal point or the

"e" and signed exponent must be present.

FLOAT =

Boolean	Literals

A boolean has two possible values, true or false. These are denoted by the identifiers "true"

and "false".

BOOL = 'true'|'false'

Character	Literals

A character literal is denoted by enclosing single quotes ' ', and can be constructed from

alphanumeric characters, traditional punctuation characters, and the specified valid escape

characters.

Valid Escape Sequence Description

\’ Single quote

\" Double quote

\\ Backslash

\n New Line

\r Carriage Return

\t Horizontal Tab

CHAR = '''	(['	'-'!'	'#'-'&'	'('-'['	']'-'~']	|	'\\'	['\\'	'"'	'n'	'r'	't'	'''])	'''

String	Literals

		['+'	'-']?? ['0'-- '9']++ '.'['0'-- '9']** (['e'	'E']['+'	'-']?? ['0'-- '9']++)?? 	

|| 	['+'	'-']?? ['0'-- '9']** '.'['0'-- '9']++ (['e'	'E']['+'	'-']?? ['0'-- '9']++)??

|| 	['+'	'-']?? ['0'-- '9']['e'	'E']['+'	'-']?? ['0'-- '9']++

�

7	of	15

A string constant is denoted by enclosing double quotes " ", and can be constructed from

alphanumeric characters, traditional punctuation characters, and the specified valid escape

characters.

Valid Escape Sequence Description

\’ Single quote

\" Double quote

\\ Backslash

\n New Line

\r Carriage Return

\t Horizontal Tab

STRING = '"'	(['	'-'!'	'#'-'&'	'('-'['	']'-'~']	|	'\\'	['\\'	'"'	'n'	'r'	't'	'''])*

'"'

Separators

A separator is a character that separates tokens. White space is also used as a separator,

unless it is defining scope.

Character Separator

'(' {LPAREN}

')' {RPAREN}

':' {COLON}

'[' {LBRACKET}

']' {RBRACKET}

'.' {DOT}

',' {COMMA}

Functions

Regular	Functions

Functions are declared using the def keyword, and must specify their arguments, return type,

and a colon:. The scope of a function is defined by whitespace - that is, all statements that are

part of the function cannot be aligned with the function declaration, but must be "indented",

8	of	15

or prefaced by at least one whitespace character past its current scope.

All function arguments that are primitive types are passed by value, meaning all arguments

are copied to the function, meaning changes to the argument within the function will not

change the argument's value outside of the function.

All function arguments that are non-primitive types are passed by reference, meaning

changes to the argument will change the argument's value outside of the function.

Function declaration: <return	type>	def	<function	name>(<type1>	arg1,	<type2>	arg2...):

GPU	Functions

The GPU function defg creates a user-defined function that is meant to be run on the GPU

kernel. A defg function is declared outside of the main function. These functions will be called

by the higher-order functions map and reduce within the main function.

There may be only one or two parameters within a defg declaration. These restrictions are for

map and reduce respectively. Each parameter is an identifier for a single element in the array(s)

that are being handled by map and reduce.

Constant non-primitives are specified with an input array of constants under the field const.

These constants should also be specified with the same name in map or reduce.

GPU function declaration: <return	type>	defg	<function	name>	(<type1>	arg_1,	<type2>

arg_2):

<return	type>	defg	<function	name>	(<type1>	arg,	const	=	const[array1,	...]):

For convenience, within a defg function the index of the element within the index of the input

array can be accessed with ID.x and ID.y. This operation is only available for 1- and 2-D

arrays, and the order of a 2-D array will be assumed to be row-major.

Higher	Order	Functions

VLC contains built-in higher order which take a defg as an argument. These built-in higher

order functions provide needed abstraction for users who do not wish to be boggled by the

specifics of GPU computing but still want to take advantage of parallelism.

The first parameter in a map or reduce function must be a defg. For the remaining parameters,

reduce takes in only one 1-D array as the second input, but map may take a variable number of

N-dimensional arrays. All input arrays may not be NULL. If the input arrays are multi-

dimensional, each dimension must have fixed-length rows. The output of map is an N-

dimensional array of the same size as the inputs, where defg has been applied to the element

in the corresponding index as the output. The output of reduce is an element of the same type

as an element of the input array. The result is obtained by performing pair-wise reduction on

adjacent members of the input array. In order to receive correct results, thedefg function

applied to the elements of the input should be commutative.

map and reduce may capture outside variables through the field const. const accepts an array of

variables to be used in the defg. These variables will be copied onto the global memory of the

device to be used by the threads executing the defg on the elements in the input arrays. map

9	of	15

and reduce are also reserved keywords and may not be used by the user to define any other

variable, constant, or function.

Higher Order

Function
Description

map(<defg>,

<array1>,

<array2>...)

Function that takes as input a function func

with X open paremeters, and X N-dimensional

arrays, performs func on the X arrays and

returns one resulting array. map also accepts 2-

Dimensional arrays.

reduce(<func>,

<array>)

Function that takes as input a function func

with two open paremeters and an array of types

array, performs pairwise reduction on every

pair in array, and returns final reduced result.

reduce also accepts 2-Dimensional arrays.

`[map reduce](, , const = const[array1, array2...]`

The field const is

optional. The const

array may contain a

variable number of

inputs of different

types.

Functions defg passed to map and reduce

1) Must have the corresponding number of arguments specified by map (X) and reduce (two)

2) Must have arguments that are the same type as the array passed into map and reduce. In

the case of map, the order of the argument types to func should be match the type of each

array

3) Must use the same names in the const field.

Map

Reduce

intint 	defg	triple(intint 	x)::

				returnreturn 	x	** 	3

main():: 	

				intint 	[4]	numbers	== 	{0,1,2,3}

				intint 	[4]	triple_numbers	== 	map(triple,	numbers)	

				print	triple_numbers	//0	3	6	9

�

intint 	defg	sum(intint 	x,	intint 	y)::

				returnreturn 	x	++ 	y

main()::

�

10	of	15

Casting

Primitive	Types

byte,int, float are primitive types that can be cast to each other. When casting from lower-

bit type to a higher-bit type, for example from a byte to a int, there is no loss of precision.

Likewise, casting a higher-bit-type to a lower-bit-type with a value that fits into the lower-

bit-type will also generate no loss of precision.

For int to byte conversions, the latter 8 bits of the int are set as the value of the byte and the

former 24 bits of the int are dropped. Performing an unsafe conversion between int and byte

can cause the program to execute falsely.

Casting from a floating-point-type,float, to an integer,byte or int, type drops the fractional

part of the floating point type.

Non-primitive	Types

VLC is a strongly typed language, and does not allow casting between non-primitive types.

Syntax

Control	Flow

If,	Elif,	and	Else	Statements

VLC uses standard if else elif control statements. These control statements take a boolean

expression as input, and execute branching according to the value of the boolean expression.

An if may be followed by optional multiple elif statements and an optionalelse statement,

and if and elif statements need not be concluded with an else.

Furthermore, every if,else, and elif block defines a new scope. if,elif, and else can also be

nested in other if,elif, and else loops.

The below example demonstrates proper use ofif,elif, and else loops.

Example:

				intint 	[4]	numbers	== 	{0,1,2,3}

				intint 	sum	== 	reduce(sum,numbers)

				print	sum	//	6

intint 	num	== 	5

ifif (num	<< 	5)::

				print	"Number	is	less	than	five!"

elif(num	>=>= 5	and	num	<< 10)::

				print	"Number	is	between	five	and	ten!"

�

11	of	15

Ternary	Operator

VLC also provides a shortcut if else ternary operator. The below example shows a case

setting integer x to <valueA> if <condition> is true, and set to <valueB> if <condition> is false.

Example:

int	x	=	<valueA>	if	(<condition>=true)	else	<valueB>

While	Loops

VLC supports traditional while loops, where the substatements within the scope of a while

loop are repeated so long as the expression is evaluated to true.

Scope within a while loop is defined by prefacing white space characters. See White Space

section for further clarification.

Users can break out of a while loop using the break keyword, or skip to the next iteration of a

while loop using the continue keyword.

A while loop in VLC has the following syntax:

Example

For	Loops

for loops in VLC take as input an iterator	assignment, a condition, and an iterating

statement.

Scope within a for loop is defined by prefacing white space characters. See White Space

section for further clarification.

The substatements within the for loop repeatedly executes until condition is false, increasing

the iterator defined in the iterator	statement by the iterating	statement.

Users can break out of for loop iteration using the break keyword, or skip to the next iteration

of a for loop using the continue keyword.

In essence, VLC supports traditional for loops that follow the below structure.

Example:

elseelse ::

				print	"Number	is	twenty	or	greater!"

whilewhile 	(<< expression>>)::

				<< substatement>>

�

				forfor (<< statement>> ,<< condition>> ,<< statement>>)::

								//	do	something	until	condition	is	false

�

12	of	15

Scope

Scoping in VLC is static, and follows the conventions of block-level scoping. Variables

defined at the top level of a program are available in the global scope of the program.

Expressions

Arithmetic	Operators

Traditional	Arithmetic	Operators

Traditional arithmetic operators can be used between two primitives of type byte int long

float or double . Operators must be used between two elements of the same primitive type.

Traditional Arithmetic Operators Description

+ Addition operator

- Subtraction operator

/ Division operator

* Multiplication operator

% Modulo operator

^ Exponent/Power operator

log Logarithmic operator

<< Bitshift left

>> Bitshift right

Array	Arithmetic	Operators

Array arithmetic operators can be used between two arrys consisting of primitive types byte

int long float or double. Operators must be used between two arrays that are of equal length

and that contain the same primitive type.

Array

Arithmetic

Operators

Description

13	of	15

arr1+arr2
Pairwise element addition on two arrays of equal length, returns array of

equal length

arr1-arr2
Pairwise element subtraction on two arrays of equal length, returns

array of equal length

arr1/arr2
Pairwise element division on two arrays of equal length, returns array of

equal length

arr1*arr2
Pairwise element multiplication on two arrays of equal length,returns

array of equal length

arr1.arr2 Dot product on two arrays of equal length

arr1**arr2
Matrix multiplication on two arrays of appropriate dimensions for

matrix multiplication, only works for 2-Dimensional arrays

Array

Arithmetic

Operators

Description

Scalar	Array	Arithmetic	Operators

Scalar array arithmetic operators can be used between an array that contains primitive types

of byte int long float or double and a scalar factor of primitive type byte int long float or

double. The array must contain the same primitive type as the scalar factor.

Scalar Array Arithmetic

Operators
Description

array	+	n
Adds scalar factor n to every element in array, returns array of

equal length

array	-	n
Subtracts scalar factor n from every element in array, returns

array of equal length

array	/	n
Divides every element in array by scalar factor n, returns array

of equal length

array	*	n
Multiples every element in array by scalar factor n,returns

array of equal length

array	^	n
Raises every element in array to power of scalar factor n,

returns array of equal length

log(array,n)

log(array,n,floor)

Takes log scalar factor of every element in array , returns array

of equal length

14	of	15

Logic	Operators

VLC supports the following logic operators, which are most often used in control statements

if elif else while and for.

Logic Operators

and or not xor != == >= <= > <

and and or logic operators are evaluated using short circuiting principles.

Operator	Precedence	and	Associativity

Operators are listed below from highest to lowest precedence, and operators listed on the

same level share the same level of precedenc=

Operator

Hierarchy
Operators

1
Logarithmic log, Power ^, Dot Product for Arrays ., Matrix

Multiplication for 2D Arrays **

2 * (Multiplication), /(Division)

3 Addition +, Subtraction -

4 Bitshift Operators <<, >>

5 Relational Logic Operators and ,or, not ,xor, ==,>=, <=, <, >

6 Assignment =

The = assignment operator is right associative. All other operators are left-associative.

External	Declarations

mainmain 	function	and	Code	Execution

VLC code execution begins at global statements, and then proceeds to execute at a predefined

main function in the file.

importimport 	Statements

The #import keyword allows VLC to import code from other VLC files. When importing other

15	of	15

VLC files, main functions are ignored in the imported files.

For example, if we have file a.vlc that imports b.vlc , any main function in b.vlc will be ignored.

