
TENLAB Reference Manual:

A MATLAB-like Language for Prototyping with Tensors

Y. Cem Sübakan, ys2939
M. K. Turkcan, mkt2126

Dallas Randal Jones, drj2115

March 7, 2016

1 Introduction

TENLAB is a MATLAB-like numerical computation language specifically aimed at proto-
typing tensor-utilizing machine learning or numerical computation algorithms. TENLAB is
designed to be extremely easy to use and work with, using a natural and extremely stream-
lined syntax whilst retaining enough versatility to address the needs of researchers or hackers
who fiercely crave instant gratification.

2 Motivation

Thanks to the rapidly increasing hype around machine learning the race between machine
learning researchers for novel breakthroughs is more vicious than ever before, creating a de-
mand for extremely particular and prototype-friendly libraries. Whereas specialized libraries
or workflows often exist for adjusting and combining well-known models and methods, re-
search often requires the ability to code new models using recently-discovered methodologies
in very short amounts of time whilst avoiding the soul-crushing process of the debugging of
implementation-specific hacks that necessarily plague existing machine learning libraries.

TENLAB is an attempt at creating such a prototyping-friendly language for implement-
ing numerical methods utilizing tensors. For our purposes, tensors are practically multidimen-
sional extensions of matrices. Applications utilizing tensors usually require working with a
number of different types of products and operators whose implementations require nontrivial
and confusing alterations in the behavior of the original programming languages. TENLAB
is designed to be more intuitive to use, facilitating the conversion of mathematical ideas to
working prototypes.

2.1 Lexical Conventions

TENLAB closely mirrors MATLAB for the sake of simplicity. Main differences: No cell
types, { } tokens have a different meaning. Only a single data type available to the user:

1

tensors. Tensor elements themselves are always double, and are considered tensors themselves
during assignment i.e. everything is hidden to the end user.

{ } tokens are for tensor products and dimension shifting. Dimension shifting itself is
possible through tensor multiplication but inefficient due to data structures and thus has its
own operation.

2.1.1 Whitespace

Whitespace is normally ignored; however, if no ; token has been detected by the end-of-line
token and if the line is not terminated by the ... token, a ; token is added before end-of-line
during compilation.

2.1.2 Comments

Comments start with the % symbol and continue until the end of the end-of-line symbol.

1 % A basic comment.

2.1.3 Compile-Time Error Fixing

Unmatched () [] symbols are automatically paired during compilation (if obviously pos-
sible i.e. at the end of the line).

2.1.4 Statement Terminator

The ; token is used to mark the end of statements.

2.1.5 Identifiers

Following the classical manner, identifiers are sequences of letters and digits; the first character
of an identifier needs to be a letter.

2.2 Keywords

Keywords are restricted to special use and have particular use cases:

1 function

2 if

3 while

4 for

5 end

2.3 Data Types

The only type supported is called tensor. Tensors represent multidimensional arrays. Ele-
ments of tensors are floating point numbers with double precision. Strings do exist for users’
convenience, but are converted to the corresponding numerical tensors during compilation.

2

2.3.1 Assignment and Indexwise Assignment of Tensors

In addition to a MATLAB/NumPy-like assignments of form

1 ID = tensor_list;

that is, for example:

1 a = 5; % Create a 1D tensor with a single element

2 b = [5]; % Same as the line above

3 c = [[5 ,4] ,[4 ,3]]; % Create a 2D tensor i.e. a matrix with

4 % elements [5 ,4;4,3]

TENLAB allows one to only assign to a subset of indices, but only if both sides of the
assignment have the same dimensionality.

1 d([[5 ,4 ,3] ,[5 ,4 ,4]]) = [5 ,4]; % Set d[5 ,4 ,3]=5 and set

2 % d[5 ,4 ,4]=4

In MATLAB fashion, indices begin counting from 1, not 0. Whereas tensors are abstracted
as nested lists for users’ convenience, under the hood they are one dimensional. In the list
format, elements can be separated using ,’s or whitespace ’ ’.

2.4 Conversions

Tensors are converted into integers internally when certain operators, specifically, equality
operators would like them to be.

2.5 Expressions

The most standard expressions supported are the ones common to popular and sane lan-
guages.

2.5.1 Arithmetic and Comparison Operators

All arithmetic operations are elementwise; however, tensors with only a single element are
automatically replicated along the singleton dimensions. Precedence of these expressions are
as expected.

1 '+' : Elementwise addition

2 '-' : Elementwise subtraction

3 '*' : Elementwise multiplication

4 '/' : Elementwise division

5 '==' : Elementwise equal to

6 '!=' : Elementwise not equal to

7 '<' : Elementwise smaller than

8 '<=' : Elementwise smaller than or equal to

9 '>' : Elementwise greater than

10 '>=' : Elementwise greater than or equal to

2.5.2 Tensor Products

In addition to the aforementioned expressions, TENLAB features a powerful implementation
of the tensor product.

1 {list} ID{list}*ID{list}

3

All lists should have the same length. Lists are sets of numbers separated by ,’s or whitespace
’ ’. Elements of the first list are either 0 or 1. The second and the third lists contain the cor-
responding indices over which the tensor product will be taken. For the indices corresponding
to the 0’s of the first list, the diagonalization argument is applied and a sum is taken over
the other indices.

Implementation and Explanation: Let A,B ∈ RL1,L2,L3 . Say, we want to the following
tensor product:

Xi1,i2 =
∑
j1,j2

Ai1,j1,j2Bi2,j1,j2

The statement for this operation in our language is the following:

1 X = {1 1} A{2 3}.B{2 3}

Here’s the pseudo-code of how we can compile this statement into C code:

1 // Set L1 , L2 , L3 here.

2 // Allocate the memory for X, as a zeros tensor

3
4 for(i1=0;i1 <L1;i1++) {

5 for(i2=0; i2 <L1; i2++) {

6 for(j1=0; j1 <L2; j1++) {

7 for(j2=0; j2 <L3; j2++) {

8 X[i1][i2] = X[i1][i2] + A[i1][j1][j2]*B[i2][j1][j2];

9 }

10 }

11 }

12 }

Here, there are two types of for loops. The outer most two for loops fills in the array X. The
inner most two for loops, matches the second and third dimensions of A and B. Now, let’s
suppose we would like to do the following with the same tensors A and B:

Xi1,i2,i3 =
∑
j1

Ai1,j1,i3Bi2,j1,i3

This operation corresponds to the following statement in TENLAB :

1 X = {1 0} A{2 3}.B{2 3}

The corresponding for loops in C format are as follows:

1 //Set L1 , L2 , L3 here.

2 // Allocate the memory for X, initialize it as a zeros tensor

3
4 for(i1=0;i1 <L1;i1++) {

5 for(i2=0; i2 <L1; i2++) {

6 for(i3=0; i3 <L3; i3++) {

7 for(j1=0; j1 <L2; j1++) {

8 X[i1][i2][i3] = X[i1][i2][i3] + A[i1][j1][i3]*B[i2][j1][i3];

9 }

10 }

11 }

12 }

4

One of the challenges is to figure out the limits of each for loop, as they change according to
the statement.

2.6 Tensor Shifts

Shifting dimensions of tensors is possible through

1 ID{list},{list}

in which the first list contains the indices to be shifted and the second contains the amounts
by which they should be shifted.

2.7 Statements

2.7.1 Expression Statements and Compound Statements

Expression Statement: Similar to C, classical statements are expression statements.

Compound Statement: A group of statements could be chained back to back, but only
when expected by conditional statements if, while or for. Collectively we can refer those
as statement lists.

2.7.2 Conditional Statements

Conditional statements are supported, in its most basic sense, through the if/else keywords.
The if keyword could be used without an else like

1 if (expression);

2 statement_list;

3 end;

or it can be used in conjunction with an else as follows:

1 if (expression);

2 statement_list;

3 else;

4 statement_list;

5 end;

Finally, the use of the elseif keyword:

1 if (expression -1);

2 statement_list;

3 elseif (expression -2);

4 statement_list;

5 else;

6 statement_list;

7 end;

allows the chaining of two or more conditional statements.

2.7.3 While Statement

The while keyword defines a loop statement that resembles

1 while (expression);

2 statement_list;

3 end;

5

and as in most other languages the loop will continue as long as the value of the expression

is nonzero.

2.7.4 For Statement

The for statement is in the MATLAB fashion:

1 for assignment;

2 statement_list;

3 end;

The statements in statement list run through for each element assigned during assignment.

2.8 Function Definitions

While different than the usual MATLAB syntax, functions are defined a similar manner to
the preceding statements:

1 function function_name(identifier_list);

2 statement_list;

3 return expression;

4 end;

and can be called at will.

2.9 Examples

Let us start with a simple Hello World program:

1 % Hello World

2 print('Hello World '); % Prints 'Hello World '

1 % Assignment

2 tensor_b = 42.0; % Create 1-dimensional tensor with a single

3 % nonzero index

4 tensor_c = 'string '; % Create a 1-dimensional tensor with

5 % 6 nonzero indices

6 tensor_d = [[45 ,42] ,[39 ,36]]; % Create a 2-dimensional tensor

1 % Arithmetic

2 print (1+1); % Displays 2

3 print ([5,4]-1); % Displays [4,3]

4 print (2*2); % Displays 4

5 print (5/7); % Displays some float

1 % Logic Operators

2 print (42 <54); % Displays 0.0

3 print ([15 ,17]==15); % Displays [1.0 ,0.0]

1 % Loops:

2 % For Loop

3 for i=[1,2,4,5,8];

4 disp(i);

5 end;

6

6

7 % While Loop

8 i=0;

9 while i==0;

10 print('This will not end.');
11 end;

1 % Using Tensors

2 A([[1 ,2] ,[2 ,3]]) = A([[1 ,2] ,[2 ,3]]) + [2 ,3];

3 % Add a value of 2 to

4 % coordinate (1,2)

5 % and 3 to (2,3)

6 % Tensor Products

7 Z ={1} A{2}.B{1}; % Dot product over A's second dimension and

8 % B's first

9 Z = A{2},{ -1}; % Shift (or roll) A's second dimension by -1

7

