Language Reference Manual
Matrix Language (ML)
COMS w4115

Kyle Jackson (kdj2109) Jessica Valarezo (jgv2108) ¢ Jared Greene (jmg2227) ¢ Alex Barkume (ajb2233) «
Caroline Trimble (cdt2132)

March 7th, 2016

Contents

1.
2.

Introduction

Types

2.1 Basic Data Types
Lexical Conventions

3.1 Identifiers

3.2 Keywords

3.3 Comments

3.4 Operators

3.5 Precedence

3.6 Function Calls

Syntax

4.1 Expressions

4.2 Declaration and Initialization
4.3 Statements

Standard Library Functions
5.1 Tuple

5.2 Matrix

5.3 FILE I/O

Examples

Semantics

1. Introduction

ML is a parallelized programming language with a focus on 1D and 2D operations, designed for computational
efficiency and a strong focus on real-time applications. This language has the ability to segment large matrices into
rows, columns or individual indices and run operations on them independently on various threads. This ability is
particularly applicable to applying computer vision algorithms to images, including filtering, transformations, color
space conversions, thresholding, and various others. When a number of these algorithms are applied sequentially to
a very large image, their total execution time can be considerably long. As such, our language focuses on reducing
the operational time of matrix algorithms. ML will support the .ppm image file type, which represents images as a
text file of pixels.

ML’s niche is image processing. By allowing the user to import images and quickly convert them into a matrix data
type, ML gives a simple basis for image processing to the user. Once given this matrix data type of tuples that
represents an image, the user can write a wide-variety of functions that manipulate the rows and/or columns of the
matrix by iterating over them. By taking advantage of parallel processing, ML can iterate over multiple rows and/or
multiple columns simultaneously, drastically reducing the operational time of image-processing functions. Creating
multiple threads, especially those that need to wait and communicate with each other, can cause substantial
problems and unwanted consequences. ML is a use-at-your-own-risk language, meaning that ML leaves it up to
programmer to understand when and how to use parallel programming. ML provides a pfor loop, asnyc
functions, and a wa it for specific parallel-processing programming.

2. Types
2.1 Basic Data Types
Type Description
int 32-bit integer value, automatic promotion to float.
float 32-bit floating point value.
bool Boolean value: true or false.
str a text value: multi ASCII character variable.
matrix Matrix of tuple, int, or float. Every tuple must be of
type int or float, and each tuple must be of the same
length. All elements of a matrix must be of the same type.
tuple A tuple is a single-type. Nesting is not allowed.

3. Lexical Conventions

3.1 Identifiers

An identifier can begin with any lowercase or uppercase letter (* [A-Za-z]). Thereafter, an identifier can have any
combination of lowercase and uppercase letters, numbers, and underscore ([0-9A-Za-z]+$).

3.2 Keywords

Keyword Description

#include <file name> Imports declarations and implementations from file name during
compile time. Include statements must be the first lines in the program

async <function name> See Parallel Constructs.

wait See Parallel Constructs.

pfor * Every iteration of the for loop is run on a different pthread. pfor (n,
exprl; expr2; expr3) statement where expr2 is a relational expression.

for * for(exprl; expr2; expr3) statement where expr2 is a relational
expression.

if * If in if-else statement. if (exprl) statement where exprl is a relational
expression

else if * Strings together multiple ifs in if-else statement. else if (exprl)
statement where exprl is a relational expression

else * Else in if-else statement. else statement

main * Main function. The code within the main function will be executed
when the executable runs. The main function always returns type int

return Return function value. In the case that the function has spawned threads,
waits for all threads to terminate.

while * while(expr) statement where expr is a relational expression

func * Defines a function.

break Breaks out of a loop.

true Boolean literal value (True).

false Boolean literal value (False).

void No type

* - curly braces are only necessary if there are multiple statements within the block.

3.3 Comments

// Single line comment

/**
Block comment

spans multiple lines

**/

3.4 Operators

Operators Description

= assignment

* multiplication

/ division

% modulus

+ addition

- subtraction

< less than comparison

> greater than comparison

>= greater than or equal to comparison
<= less than or equal to comparison
== equality comparison

= inequality comparison

&& logical AND operator

logical OR operator

logical NOT operator

statement separator

Access a specific element of tuple

Matrix Operators

Description

List of values.

{}

Encloses row or entire matrix.

a range of ints, upper bound is exclusive.

Matrix indexing - begins at 0, 0
Matrix[row][column]

Matrix and scalar operations

Compares each entry in matrix to a single constant

float or int, or to each corresponding entry in another

matrix.
3.5 Precedence
Precedence Expressions and Operators
highest <func name>(argl, arg2, ...)

<matrix name>[indexl] [index2]

== | =

&&

lowest =

4. Syntax

4.1 Expressions
Assignment Expressions

The assignment operators are binary operators with right-to-left associativity. It is an identifier and an expression
separated by an equals sign.

Arithmetic Expressions
The arithmetic operator represent basic mathematical operations with left-to-right associativity.

Matrix Arithmetic Expressions

These represent operations on matrices.

Examples:
// Standard matrix scalar multiplication
M1 = M1 * 3;

// Standard matrix multiplication
M1 =M1 * M1l;

Function Calls
To be able to call a function, it must have been declared and implemented before. The function call will execute
using the given arguments and return whatever value was defined as the return type during its declaration.

All argument passing is done by-value, meaning a copy of each argument is made before the function has access to
it as a parameter. Therefore, a function may change the values of the function parameters within the scope of the
function block, without affecting the arguments in the function call.

The function call will return the value of the data type defined as a return type in the function declaration.

Because our language was designed with matrices and splitting up iterations to execute in parallel, this will help
prevent race conditions.

function name (<arguments>) ;

4.2 Declaration and Initialization
Basic Data Type Declaration

Basic data types are declared in the format:

type variable name;

Variables can be local, formal arguments in a function, or global. The precedence of these variables is as follows:

Precedence Variable Type
highest local

formal
lowest global

Basic Data Type Initialization

Basic data types can be initialized in the same line as declaration, in the format:

type variable name = literal;
Or, basic data types can be initialized in one of the subsequent lines of the program, in the format:

type variable name;

variable name = literal;
Example:

int x = 10;

int y;

y = 15;

float y = 5.0;
str z = “Hello, World!”;
bool b = true;

Tuple Declaration
Tuples are declared in the format:
type tuple variable name;

However, if a user would like to declare a tuple and initializeitto 0, 0.0, false, “” or {},dependingon
the type, it can be declared in the manner.

type tuple variable name[n] = {};
Tuple Initialization
A tuple can be initialized in the same line as its declaration, in the format:
type tuple variable name = (literal, literal, literal,...);
A tuple can be initialized to any 1...n literals, all of type type. A tuple is not of constant size and, thus, is not

declared with a size. The only time a size is specified is in the special case of declaring a tuple and initializing it to n
zeros, in the manner name [n] (see above).

Tuples are a immutable data type, meaning any operation performed upon them will return a new instance of a tuple
with the appropriate manipulations.

Matrix Declaration
Matrices can either be declared in the format:
type matrix variable name;
or
type matrix variable name[row] [column];
where row and column are integers.

Example:
int matrix MO;
int matrix M1[3][4];

Matrix Initialization

Similar to basic data types, a matrix can be initialized on the same line as its declaration, or initialized in any
subsequent line of the program. Furthermore, because of the two different declaration styles, there are two ways of
initializing a matrix.

To utilize the type matrix name declaration style, a user must initialize a matrix structurally by listing each
row between curly braces. Elements within rows are separated by commas, and rows themselves are separated by
commas as well. See below:

int matrix MO = {
{0, 1, 2, 3}, /* dinitializers for row indexed by 0 */

{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */
}i

int matrix M1 = {{1,1,1},{2,2,2},{3,3,3}};

However, if the user utilizes the type matrix name [row] [column]declaration style, a user can simply
provide elements separated by commas, enclosed in curly braces. See below:

int matrix M3[3]1(4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Users may also use the structural initialization, combined with the type matrix
name [row] [column]declaration style. However, if the [r][c] declaration and the structure do not match up, this
will be an error.

int matrix M1([3][4] = {
{0, 1, 2, 3} , /* initializers for row indexed by 0 */
{4, 5, o6, 7} , /* initializers for row indexed by 1 */
(8, 9, 10, 11} /* initializers for row indexed by 2 */
}i

// 2-D matrix with tuple elements
tuple matrix M1[2][3] = {
{ (255, 255, 255), (255, 255, 25
{(, o, 0), (0, 0, 0), (0, 0, O

5), (255, 255, 255)},
)}
}i
//ERROR:
int matrix M1[2][3] = {
{1,1,1},
{2,2,2},
{3,3,3}
}i

It is possible to declare and initialize a matrix to just Os by utilizing the int matrix
variable name[row] [column]declaration style followed by {} . See below:

int matrix binaryMatrix([3][2] = {};

Accessing a Tuple Element

An element in a tuple is accessed by using its index in brackets following the tuple variable name. If saving in a
variable, the type of the variable must match the type of the element (i.e. the type of the tuple).

type variable name = tl[i];

Accessing a Matrix Element

An element in a two-dimensional matrix is accessed by using the subscripts, i.e. row index and column index of the
matrix. If saving in a variable, the type of the variable must match the type of the element (i.e. the type of the
matrix).

type variable name = mO[row] [column];

Example:
int val = m0[2][3];

int tuple pixel = ml[1l][2];
printt (pixel) ;
pixel =

00O

Matrix Primitive Transformations

Primitive transformation can be used in combination to allow the programmer to express any arbitrarily complex
matrix transformation. All of these transformations return a matrix.

// Returns a specified region of a matrix using python-like indexing
// Returns a matrix with 2nd and 3rd column of M1
M1[][1:3];

// Returns a matrix with 2nd and 3rd rows of Ml
101:3111;

// Returns a matrix with 1lst row of M1
M1[O]T[1-

// Returns matrix without the 1lst column of M1
MI[][!0];

// Returns the intersection of 1lst 3 columns and 3 rows
M1[0:3][0:371;

Examples:
// 1 row, 3 columns
int matrix MO = {{1,2,3}};
printm (MO) ;
MO =

// 1 row, 1 column
tuple matrix M1 = {{(1,2,3)}};
Ml =

// 1 row, 1 column

// Same as M1, uses whitespace in place of commas when creating tuples
tuple matrix M2 = {{(1 2 3)}};

printm(M2) ;

M2 =

// 2 rows, 3 columns

int matrix M3 = {{1,2,3},{1,2,3}};
printm (M3) ;

M2 =

// 1 row, 3 columns
tuple matrix M3 = {{ (255 255 255), (0 0 0), (255 255 255)}};
printm (M3) ;
M3 =
255 255 255 0 0 0 255 255 255

// 2 rows, 3 columns

tuple matrix M4 = {{ (255 255 255), (0 0 0), (255 255 255)},
{ (255 255 255), (0 0 0), (255 255 255)}};

printm (M4) ;

M4 =
255 255 255 0 0 0 255 255 255
255 255 255 0 0 0 255 255 255

// 1 row, 6 columns
int matrix M5 = happend (MO,MO0) ;
printm (M5) ;
M5 =
123123

Function Declaration

Functions consist of a function header and a function body. The function header contains the keyword func, the
return type, which can be any of the fundamental types, including void. The header also contains the function
name, which must be a valid identifier, and a parameter list enclosed in parenthesis. The function body is enclosed
in curly braces.

Examples:
// Function with no return type (void)
func void <function name> (<parameters>){ statement }

// Function with a return type
func return type <function name> (<parameters>){ statement }

4.3 Statements

Conditional Statements

There are two forms of conditional statements that consist of a 1 f and optional else if and else
statements.

Examples:

if (boolean expression) { block of statements executed on TRUE
evaluation; }

else 1if (boolean expression) { block of statements executed on FALSE
evaluation of boolean expression in preceding if, FALSE evaluation of all
preceding else if statements, and TRUE evaluation of boolean expression }

else { block of statement executed on FALSE evaluation of boolean
expressions of preceding if statement and all preceding else if
statements; }

Looping Structures
ML has various looping structures. With for and pfor, all of the expressions must be present for the loop to
execute. In the case of pfor, see Parallel Constructs.

Examples:
while (expression) { block of statements }
for (expression; expression; expression) { block of statements }
pfor (k; expression; expression; expression) { block of statements }

Loop Interruption
The entire execution of a looping structure can be terminated with break.

Parallel Constructs

async

The async statement spawns a new thread for the given statement. The thread will execute a function block of code
in parallel.

async (<function call>);

When async is given an optional int f£id, it will pair the given function call on the spawned thread with an
integer identifier.

async (<function call>, int fid); // Must use a unique int fid
<variable_name> = async (<function_call>) ;
wait
There are various ways in which the wait () statement can be called. In the case that no argument has been
specified, wait () will wait for all previously spawned threads to finish executing. It will block any subsequent code

from executing.

wait ()

The wait statement can also wait for a specific function call. The int fid is an integer that was previously
defined by the programmer to identify a function call when passed to async . This will help when there have been
various calls to the same function, as a way of differentiating which function call to wait on. It will wait on all of
the threads spawned by the specified function call to finish executing and prevent the execution of code following it.

This version of wait can not be paired with async (<function call>), sincethereisno int fid
associated with it.

wait (<function name>, int fid);

Specifying an int fid is optional. In the case that the only argument is a function name, it default to wait on the
most recent function call.
wait (<function name>);

pfor

The pfor runs a loop in parallel, assigning its separate iterations to separate threads. Successful parallelization of a
loop depends on whether the benefit of running it in parallel outweighs the communication costs. It is up to the user
to know whether or not separate iterations are independent.

The user can specify n (an integer), the maximum number of threads to spawn, or it will default to a pool of n = 4.
The user can not specify more than 4 threads.

pfor (n; expression; expression; expression) {statement}
return
The return is used within the scope of a function, and will wait for all of the threads the function spawned to
finish executing before returning a value.

return expression;

In the case of a void function, return will still wait on a function’s spawned threads to return.

return;

5. Standard Library Functions
5.1 Tuple
lenT (t);
//Returns the length of the tuple

insert (t, x, 1);
//Inserts x at the i*™ position of the tuple t

delete(t, 1i);
//Deletes from the i*™ position of tuple t. Produces an error if i is out
of bounds.

5.2 Matrix

// Return the
len(M1[O0][]);

// Return the
len(M1[][0]);

length of a row in a matrix.

length of a column in a matrix.

// Vertically append two matrices with the same number of columns.

vappend (M1, M2);

// Horizontally append two matrices with the same number of rows.

happend (M1, M2);

5.3 FILE I/O

Function

Description

open (<path to img file>)

Opens a image file with a specified name and returns a
matrix representing the image file.

out (Kmatrix name>, <path to img file>)

Opens a new file and writes the matrix to the image
file.

// Prints out matrix
func printm(matrix MO);

// Prints out tuple
func printt (tuple TO);

// Prints out non-matrix and non-tuple data type

func print (int a);

Opening files, or writing to files, are two functions which can not be done asynchronously.

// Read in the image file,
func matrix open(file path);

// Write matrix M1 to file

func void out (matrix MO, file path);

6. Examples
Example 1
Every line of code is executed sequentially.

int main () {

tuple matrix M1

tuple matrix M2 = {{M1},{M1},{M1}};

returns a matrix

{{ (255 255 255), (0 0 0), (255 255 255)}};

printm(M2) ;

// Update M2 to an int matrix of 1/0s instead of tuple matrix
M2 = convertToBinary (M2);

printm(M2) ;

return 0;

func matrix convertToBinary (matrix MO) {
int thresh = 128;
int matrix bMatrix[len(MO[O][])][len(MO[][0])] = {};

// Outer loop runs iterates over every row
// 5 threads are spawned
pfor(5; i=0; 1 < len(MO[][0]); i++) {

for (int j = 0; j < len(MO[O][]); J++) {
if (MO[i][j] > thresh) {
bMatrix[1][j] = 1;

}

return bMatrix;

Output..
M2 =
255 255 255 0 0 O 255 255 255
255 255 255 0 0 O 255 255 255
255 255 255 0 0 0O 255 255 255
M2 =

o e
o o o
=

Example 2
There are blocks of code running in parallel.

int main () {

tuple matrix M1 {{ (255 255 255), (0 0 0), (255 255 255)}};
tuple matrix M2 = vappend(M1l,M1);

M2 = vappend (M2, M1);
printm(M2) ;

/** RGB values are converted to binary. The current thread waits for
convertToBinary to return (see return in parallel constructs) **/
M2 = convertToBinary (M2);

// Two independent functions are run on parallel threads
int sum = async (getSum(M2));
int avg = async(getAvg (M2)) ;

// The current thread waits for all parallel threads to terminate
wait ()

print (sum) ;
print (avg) ;

return 0;

//printm, Standard Library Function
func printm(matrix M) {
for (int i = 0; 1 < len(M[0][]); i++) {
for (int j = 0; J < len(MO[][0]); J++){
print (M[1][3]);
print (™ V)
}
print ("M\n”);

func float getAvg(matrix MO) {
int sum = getSum(MO) ;
int total = len(MO[][O0]) * len(MO[O][]):
return float (sum)/float (total);

func int getSum(matrix MO) {
int sum = 0;
pfor (5; int 1 = 0; i < MO[][0]; 1i++) {

for (int
sum +=

}

return sum;

Output..

0.33

7. Semantics

Semantic

The user cannot sequence variable declaration. If variables are to be declared on the same line, the user can do so
as follows: <type> <variable namel>; <type> <variable name2>; ..
In general, ML does not allow sequencing.

Function names cannot be overloaded and must have distinct names

Code blocks under a loop or function must be enclosed in brackets if there are multiple statements within the
block.

Code statements must be terminated with a semicolon ;.

Return statements in functions that cause unreachable lines of code are not allowed.

Functions that do not return a type and are used solely for its side effect must be declared as void
<func_name>

The main function must always return type int.

9. References
1. B.W. Kernighan and D.M. Ritchie. "Appendix A Reference Manual," in The C Programming Language,
2nd edition. Murray Hill, NJ: AT&T Bell Laboratories.
2. Vector Programming Language
http://www.cs.columbia.edu/~sedwards/classes/2013/w41 1 5-fall/lrms/vector.pdf

3. SMPL Programming Language
http://www.cs.columbia.edu/~sedwards/classes/2013/w4115-fall/reports/SMPL.pdf

http://www.cs.columbia.edu/~sedwards/classes/2013/w4115-fall/lrms/vector.pdf
http://www.cs.columbia.edu/~sedwards/classes/2013/w4115-fall/reports/SMPL.pdf

