JSJS

Language Reference Manual

Jain Bahul bkj2111
Srivastav Prakhar ps2894
Jain Ayush aj2672

Sadekar Gaurang — gss2147

CONTENTS

JSJS - PLT Spring 2016

Contents
Introduction

Comparison with Javascript

Literals

Assignments L.

Control Flow

Types

Primitive Types.

Number

Function Types
Generic Types
Type Declarations
Typesin AST

Lexical Conventions

Comments
Identifierso
Value and Function Identifiers
Module Identifiers
Keywords
Separators

Literals

CONTENTS

JSJS - PLT Spring 2016

Number Literals

Boolean Literals

String Literals.
List Literals
Map Literals

Operators

Functions

Lambdas
Function Types

Function Calls and Usage

Operators
Arithmetic Operators

Relational Operators

Boolean operators

Assignment Operator

String operator

Operator precedence

Expressions

Blocks

if-then-else

Standard Library Functions
List Module
Map Module
String Module
IO Module

15

....................... 15
....................... 16
................................ 17

18

....................... 18
....................... 19
....................... 20
....................... 20
....................... 20
....................... 20

22

....................... 22
....................... 23

Maps JSJS - PLT Spring 2016

Introduction

JSJS is a strongly typed language for the web. Taking inspiration from languages such as
OCaml, Scala and TypeScript, JSJS aims to be a pragmatic and a powerful language that
can be used to build real-world applications. Since JSJS compiles down to Javascript, it
can run both in the browser and on the server (Node.js). While designing the syntax and
semantics of the language our goal has been the following -

e Minimal number of keywords

e Approachable to Javascript users

e Familiar to functional programmers
o Explicit is better than implicit

Comparison with Javascript

Literals
JS JSJS
3 3
3.1415 3.1415
"Hello World!" "Hello World!"
'Hello world!' Cannot use single quotes for strings
true true
[1,2,3] [1,2,3]
{ llfooll : Il1|| , Ilbarll : l|2|l } { llfooll : |l1|| , Ilbarll : l|2|l }
Strings
JS JSJS
'abc' + '123' "abc" " "123"
'abc'.length String.length("abc")
Maps
JS JSJS
x["foo"] = "1"; Map.set(map, "foo", "1");

x["bar"] = "2"; Map.set(map, "bar", "2");

Control Flow JSJS - PLT Spring 2016

Functions

JS

1. (x,y) { return x + y; }

2. List. (function(x) { return x*x; }, [1,2,3,4]);
3. Math. (3, 4)°

4. var filter = function(f, xs) { ... }

JSJS

1. /\(x : num, y : num) : num => x+y;

2. List.map((/\(x : num): num => x * x), [1,2,3,4]);

3. Math.max(3, 4)

4. val filter = /\(f: (num) -> bool, xs: list num): list num => { ... }

Assignments

JS JSJS

var x = 10 val x = 10

var x = 'foo'; val x = "foo";

var x = true; val x = true;

var x = [1,2,3]; val x = [1,2,3];

var x = { "foo" : m{n_ "par" : "2 }; val x = {"foo": "qN tpar': "2 };
var x = function(x, y) { return x+y; } wval sq = /\(x: num): num => x+y;

Control Flow

JS JSJS

if(x > y) { return x; } NA, else construct necessary

if(x > y) { return x; } else { return y; } if x > y then x else y

return 42; No return statements, only expressions

JSJS - PLT Spring 2016

Types

Types are at the forefront of JSJS. Every value declaration, functions, and even compound
literals need an explicit type definition. This section elaborates more on the different types
of data that JSJS supports.

Primitive Types

There are four fundamental types or primitive types in JSJS.

Number

The num or the number type in JSJS corresponds to the Number type in Javascript.

According to the ECMAScript standard, there is only one number type: the double-precision
64-bit binary format IEEE 754 value (number between -(253 -1) and 253 -1). There is no
specific type for integers and hence the same type is used to represent floating-point numbers.

AST

type primitiveType =
| TNum

String

The string type in JSJS is used to represent textual data and corresponds to the String
type in Javascript. It is a set of “elements” of 16-bit unsigned integer values. Each element
in the String occupies a position in the String. The first element is at index 0, the next at
index 1, and so on. The length of a String is the number of elements in it.

AST

type primitiveType =
| TString

Boolean

The bool type in JSJS represents a logical entity and can have two values: true, and false.

AST

type primitiveType =
| TBool

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Composite Types JSJS - PLT Spring 2016

Unit

Unit, written unit, is a built-in type that has only one value. It is mostly used for functions
that causes side effects and have no useful return value.

Unit is also used for interopability with functions in Go that has no return value at all. For
example, the JSJS expression below would have the type string -> unit in JSJS.

val nothing = /\(x: string): unit => print(x)

The literal unit has the type unit.
AST

type primitiveType =
| TBool

Composite Types

There are two primary composite types in JSJS

Lists

Like other functional programming languages, Lists are the fundamental data structures
in JSJS. They serve as the primary basis of storing one or more related values together.
The type signature of a list is 1ist T where T is one of the other types - either primitive
or composite. Here are a few examples of defining list types - - 1ist num - list string -
list 1list bool

Lists in JSJS are homogenous, i.e they can contain only one type of data. A list whose type
is declared as 1ist num can only store elements of num type. Lists can also contain other
lists which have a type list list T.

AST

type primitiveType =
| TList of primitiveType

Maps

Maps is another important data structure in JSJS and is treated as a first-class citizen. Since
JSJS compiles down to Javascript where Maps (called objects) are used extremely liberally,
Javascript programmers will feel right at home in accessing this useful data structure with
as much ease as they are used to. Map types follow a different syntax for declaration: <T:
U> where Tis the type of the key and U is the type of the value stored in the Map. Example
declarations of Maps are -

Function Types JSJS - PLT Spring 2016

// simple maps
val names : <string: num> = { ... }
val friends : <string: list num> = { ... }

// nested maps
val people : <string: <string: bool>> = { ... }

Like lists, Maps in JSJS are homogenous. Like other strongly typed languages, the keys of a
map should have the same type and so should the values.

AST

type primitiveType =
| TMap of primitiveType * primitiveType

Function Types

Like other values, functions are expressions in JSJS. That means that functions also have
types and functions expression also have a function type. The type of a function, is mapping
of types from its formal arguments to its return type. Thus a function that takes n arguments
has the following type signature - (T1, T2, T3, ... Tn) -> T.

// type of a function that takes two arguments
// of type num and returns a bool type.
(num, num) -> bool

The type of a function is determined at the time of its declaration. Each formal argument in
a function definition should have a type attached followed finally by the return type of the
function.

// a function declaration with explicit type annotations

val pow : (num, num) -> num = /\(x: num, y: num): num = {
77 s

b

Function types in the JSJS compiler are implemented using mutually recursive algebraic
data-types.

AST

type primitiveType =
| ...
and funcType = primitiveType list * primitiveType

]

Generic Types JSJS - PLT Spring 2016

Generic Types

JSJS also supports polymorphic types. Polymorphic function types can contain of type
variables. These are like placeholders for the types used when applying the polymorphic
function. A type variable has to be defined by an uppercase single letter.

val map = /\(f: T -> U, xs: list T): list U => {

7Y ooc
}

AST
type primitiveType =
| T of char
Type Declarations
Type annotations of all expressions (except functions) are optional. The type system infers

the type of the expression from the expression on the right and assigns that type to the val
on left.

Grammar
assigns:
| VAL ID COLON primitive ASSIGN expr { Assign($2, $4, $6)
| VAL ID ASSIGN expr { Assign($2, TSome, $4) }
AST
type expr =

| Assign of string * primitiveType * expr

Ezxamples

// explicit type definition
val name : string = "Foobar";

// types are optional and count is assigned the “num’ type.
val count = 10 + 20;

// wrong type annotations will raise type mismatch errors
val happy? : bool = "stringl" = " " 7 "string2";

// functions need an explicit type declaration
val square = /\(x: num, y: num): num => X * y;

Types in AST

JSJS - PLT Spring 2016

Types in AST

In conclusion, the types of JSJS are defined in the AST as below -

type primitiveType =

and

)y

T of char

TSome

TNum

TString

TBool

TUnit

TFun of funcType

TList of primitiveType

TMap of primitiveType * primitiveType
funcType = primitiveType list * primitiveType

JSJS - PLT Spring 2016

Lexical Conventions

Comments
Only single-line comments are allowed in JSJS. Anything followed by // on the line will be
considered as a comment and will be ignored by the compiler.

Lexer:

rule token =
parse
| n//m { comment lexbuf; }

and comment =
parse

| '\n' { token lexbuf }
| { comment lexbuf }

FEzxzample:
// This is a comment

......... // This s a comment too

Identifiers

Identifiers are sequences of characters used for naming JSJS entities. All identifiers cannot
have the same spelling (character sequence) as a JSJS keyword, JS keyword, or a boolean
literals, or a compile-time error occurs. Lowercase letters and uppercase letter are distinct,
such as isEmpty? and isempty? are two different identifiers.

Value and Function Identifiers

Valid identifier characters for values and functions include ASCII letters, decimal digits,
underscore character and the ‘?” character. The first character must be a small case
alphabetic character. The ‘?° character can only be used as the last character of the
identifier.

Regular Ezpression:

id= [|a|_|Z|] [Ial_|zl |A|_|Z| IO|_I9| |_|]* [|7|]7

Example:

10

Keywords JSJS - PLT Spring 2016

// Valid Identifiers for values and functions
X

age

totalAmount

total_amount

isEmpty?

personl

// Invalid Identifiers for wvalues and functions
X

1lperson

isEmpt?y

&name

Person

Module Identifiers

Valid identifier characters for modules include only ASCII letters. The first character must
be an upper case alphabetic character.

Regular Ezxpression:

module= [|A|_|Z|] [lal_lzl |A|_|Z|]+

Ezxzample:

// Valid Identifiers for modules
List

StringMap

HashSet

// Invalid Identifiers for modules
stringMap

hash_set

&list

Keywords

Keywords are special identifiers reserved for use as part of the programming language itself.
You cannot use them for any other purpose. JSJS recognizes the following keywords:

val, if, then, else, num, bool, string, unit, true, false, list

Separators

A separator separates tokens. Separators themselves are simply single-character tokens.

11

Literals JSJS - PLT Spring 2016

Character Token

(! { LPAREN }
DR { RPAREN }
r{ { LBRACE }
"} { RBRACE }
" { LSQUARE }
" { RSQUARE }
! { SEMICOLON }
Y { CoMMA }

rot { DOT %

Literals

A literal is a source code representation of a value of a primitive type or a composite type.

Number Literals

A number literal has the following parts: a whole-number part, an optional decimal point
(represented by an ASCII period character), and a following fraction part. The whole number
and fraction parts are defined by a single digit 0 or one digit from 1-9 followed by more
ASCII digits from 0 to 9.

Regular Expression:

number = digit+ '.'? digitx*

Example:

// Valid number literals
4

4.5

0.0002

42.

// Invalid number literals
7

le+3

Boolean Literals

The boolean type has two values, represented by the boolean literals true and false, formed
from ASCII letters.

bool = "true" | "false"

12

Literals JSJS - PLT Spring 2016

String Literals

A string literal is represented as a sequence of zero or more ASCII characters enclosed in
two double quotes. The following characters are represented with an escape sequence, which
consists of a backslash and another character:

o “\” - backslash

wny

. - double-quote

e “\n” - new line

o “\r” - carriage return
e “\t” - tab character

Regular Expression:

string= ([I e |#|_|[| |]|_|~|] | |\\| [|\\| T e 't'])*

List Literals

A list literal is represented by comma separated expressions that evaluate to literals of the
same type enclosed within square brackets.

Grammar:
| LSQUARE actuals_opt RSQUARE { ListLit($2) }

actuals_opt:
| opts = separated_list(COMMA, expr) { opts }

Ezxample:

// Literal for a list of numbers
[1,2,3,4,5,6]

// Literal for a list of strings
[Iljsjsll, llisll, llawesomeﬂ’ |l! ! ll]

// Literal for a list of bools

[1 ==1, 2 ==3, 5 <= 4, !true]

Map Literals

A map literal is represented by comma separated key-value pairs that are enclosed within

curly braces. A key can only be expressions of number, string or a bool type, while values
can be expressions of any type. A key-value pair is written as <key> : <value>.

Grammar:

13

Operators JSJS - PLT Spring 2016

| LBRACE kv_pairs RBRACE { MapLit($2) }
kv_pairs:
| kv = separated_list(COMMA, kv_pair) { kv }
kv_pair:
| expr COLON expr { %1, $3 }
Example:

// A map literal with key as a number and value a string.
{1: "One", 2: "Two", 3: "Three", 4: "Four" }

// A map literal with key as a number and value as a list of strings.
{1: ["One", "Uno"], 2: ["Two", "Dos"], 3: ["Three", "Tres"] }
Operators

The following operators are reserved lexical elements in the language. See the expression
and operators section for more detail on their defined behavior

Character Token

T4t { PLUS }
-t { MINUS }
k! { MULTIPLY }
A { DIVIDE }
Al { MODULUS }
el { CARET }
<! {LT}

1= { LTE }

1> {GT }

1>=" { GTE
t==! { EQUALS }
=t { ASSIGN }
e { NOT 2
&k { AND 3}
" {OR }

14

JSJS - PLT Spring 2016

Functions

All functions in JSJS are Lambda expressions. Since functions are treated as first class
citizens, these lambda expressions can be assigned as values to identifiers, passed as arguments
to other functions, and returned as values from other functions.

To make a named function declaration, a lambda expression is assigned to an identifier using
the val keyword, just like any other type declaration.

Lambdas

Lambda expressions are denoted by the symbol /\, which resembles the upper case Greek
letter Lambda. JSJS Lambda expressions have the following form:

/\(argument declarations if any) : return type => {

Block of expressions, the last of which
is the value that is returned

}

A shorthand syntax is also supported if the body of the Lambda is a single statement:

/\(argument declarations, if any) : return type => expression

The argument declarations must be annotated with their types, and a return type of the
body of the /\ expression also must be specified.

For example, the following / expression takes a single number x as an argument and evaluates
the square of x.

/\(x : num) : num => x * x

It is also possible to define Lambda expressions that don’t take any arguments:

/\NQ : unit => println("hello world")

or those that take multiple arguments:

/\(fname : string, lname : string) : string => "Hello " = " " = fname ~ " " ~ lname

The body of a Lambda can also be a block of expressions, where the last expression is the one
that is implicitly evaluated and returned. The following /\ takes a single numeric argument
x and adds the value y - assigned as 10 in the body - to x.

/\(x : num) : num => {
val y = 10;
X+y;

}

15

Function Types JSJS - PLT Spring 2016

AST for /\ expressions:

type expr:
| FunLit of func_decl

func_decl = {

formals : (string * primitiveType) list;
return_type : primitiveType;
body : expr;
}
Grammar:
literals:
| LAMBDA LPAREN formals_opt RPAREN COLON primitive FATARROW expr Y%prec ANON {
FunLit ({
formals = $3; return_type = $6; body = Block([$8]);
b
}
| LAMBDA LPAREN formals_opt RPAREN COLON primitive FATARROW block {
FunLit ({
formals = $3; return_type = $6; body = Block($8);
b
}

Function Types

When an identifier is assigned to a /\ expression, it becomes a value of the function type.
The type of a function is

fn : (A,B) > C

Here, fn takes 2 arguments of type A and B respectively, and evaluates an expression or block
of type C. In general, a function type is a list of input argument types (optional) and return
type.

When assigning an identifier to a /\ expression using the val keyword, annotating the
identifier with the function type is optional, just like type specifiers for all other expressions.

// function type explicitly specified
val cube : (num) -> num = /\(x : num) : num => X * X * X ;

// function type of wal not annotated

val whatDoYouKnow = /\(name : string) : string => {
if name == "John Snow"
then "Nothing"
else "Something" ;

i

16

Function Calls and Usage JSJS - PLT Spring 2016

AST

type primitiveType =
| TFun of funcType
and funcType = primitiveType list * primitiveType

Grammar

primitive:
| LPAREN args RPAREN THINARROW primitive { TFun($2, $5) }

args:
| args = separated_list(COMMA, primitive) { args }

Function Calls and Usage

Functions are called by invoking the name of the function and passing it actual arguments.
These arguments can be any kind of expressions.

Every function call is itself an expression, and evaluates to a value which has a type (the
return type of function).

// function called with a numeric literal
val sq5 = sq(b)

// function called with an expression
val x = 8;

val y : num = sq(x);

val z = cube(x + y);

// function called with a function as an argument

val addOne = /\(x : num) : num => x + 1;

val addOneSqr = /\(f: (num) -> num, g: (num) -> num, x : num) : num => f(g(x));
val result = addOneSqr(sq, addOne, 8);

AST

type expr =
| Call of string * expr list

Grammar

expr:
| ID LPAREN actuals_opt RPAREN { Call(s$1, $3) }

17

JSJS - PLT Spring 2016

Operators

JSJS supports various operators for different data types. Broadly, JSJS includes Arithmetic
Operators, Relational Operators, Boolean operators, Assignment Operator and String
Operator. While most of these are binary operators, some are unary.

| Binop of expr * op * expr
| Unop of op * expr

The above code excerpt defines two types of expressions. The former defines a binary operator
while the latter gives the format of a unary operator.

Arithmetic Operators
JSJS supports the following arithmetic operators: +, -, *, /, %.. All arithmetic operators

require two operands of num data types. These can be either literals or variables or a
combination of the two.

1. Addition

10 + 7; //17
X + y;

2. Subtraction

10 - 7; //3
X-y;

3. Multiplication

10 = 7; //70
X % y;

4. Division

21 / 7; //3
x/vy;

5. Modulus

10 % 7; //3
X hys

18

Relational Operators JSJS - PLT Spring 2016

Relational Operators

The following relational operators are supported by JSJS: ==, !=, >=, <=, >, <. Rela-
tional operators require two operands. These operands can be of any primitive type namely,
int, bool, string or unit. The only condition is that both the operands should be of the same
type. These expressions always return a value of boolean data type.

1. Equals

5 == 5 //true
"abc" == "def" //false
true == false //false

2. Not Equals

5 1=5 //false
"abc" = "def" //true
true != false //true

3. Less than

5 <5 // false
"abc" < "def" //true
true < false //false

4. Less than or Equals

5 <=5 //true
"abc" <= "def" //true
true <= false //false

5. Greater than
5> 5 //false

"abc" > "def" //false
true > false //true

6. Greater than or Equals
5 >=5 //true

"abc" >= "def" //false
true >= false //true

19

Boolean operators JSJS - PLT Spring 2016

Boolean operators

JSJS supports three boolean operators: &&, ||, !.&&and|lact on two operands
whereasj is a unary operator. These act on boolean data types and return a single value of
type boolean.

1. And

true && false //false
x && y

2. Or

true || false //true
xIly

3. And

ltrue //false
Ix

Assignment Operator

The assignment operator is used to assign a value to an identifier. The value of the expression
on the right side is evaluated and assigned to the identifier on the left hand side.

val x : num = 5 + 3;
val y : string = "abc" T "def";
val z : bool = true;

String operator

JSJS includes an operator for strings as well. The ~ operator is the string concatenation
operator, which takes two strings and returns an output string formed by the concatenation
of the two.

"abc" = "def" //Ilabcdefll

%Y

Operator precedence
JSJS defines a precedence order in which operations are performed when more than one

operators are present in a single expression. The operators sharing the same precedence are
evaluated according to their associativity. Operators which are left associative are evaluated

20

Operator precedence JSJS - PLT Spring 2016

from left to right. Similarly, right associative operators are evaluated from right to left. In
JSJS, all operators are left associative except for the assign(=) operator. Following is the
chart of operator precedence.

*’ /,%
+. -

B

The following OCaml code defines the operator precedence along with their associativity for
our parser. The precedence increases from top to bottom which means that operators on the
bottom are always evaluated first.

%right ASSIGN

%left CARET AND OR

%left NOT

%left LTE GTE LT GT EQUALS NEQ
%left PLUS MINUS

%left MULTIPLY DIVIDE MODULUS
%left NEG

21

JSJS - PLT Spring 2016

Expressions

Everything in JSJS is an expression. Accordingly, an entire JSJS program can be defined as
a list of expressions.

program:
| expr_list EOF { %13

expr_list:
| exprs = nonempty_list(delimited_expr) { exprs }

All these expressions are composed of identifiers, operators, literals and function calls.
Following is an exhaustive list of different types of expressions in JSJS:

type expr =
| Binop of expr * op * expr
| Unop of op * expr
| NumLit of float
| BoolLit of bool
| StrLit of string
| MapLit of (expr * expr) list
| ListLit of expr list
| Assign of string * primitiveType * expr
| Val of string
| Block of expr list
| If of expr * expr * expr
| Call of string * expr list
| FunLit of func_decl
| ModulelLit of string * expr

and

func_decl = {
formals : (string * primitiveType) list;
return_type : primitiveType;
body . expr;

}is

Blocks

A block is a list of several expressions enclosed in curly braces. The entire block is executed
in the order in which expressions appear and the value of the last expression is returned. In
JSJS, blocks are encountered inside of if-then-else statements and function definitions.

block:
| LBRACE expr_list RBRACE {$27%

expr_list:

22

if-then-else JSJS - PLT Spring 2016

| exprs = nonempty_list(delimited_expr) { exprs }

delimited_expr:
| expr SEMICOLON {81}

if~then-else

if-then-else behaves similarly to the standard control flow constructs of programming lan-
guages. Following is the grammar definition of an if-then-else statement.

Grammar:

| if expr then block else block { If($2, Block($4), Block($6)) }

One important point to keep in mind is that the return type of then and else blocks should
be same. Otherwise the compiler will throw a type mismatch error.

Example:

if x >y
then { print(x); x; }
else { print(y); y; }

The curly braces in then and else blocks are required only if the blocks consist of more than
one expression but are optional otherwise. They are accordingly handled in the grammar as
well.

Standard Library Functions

JSJS provides a simple set of standard library functions to perform basic operations on
lists, maps and work with standard input/output. By default, all the following libraries are
automatically available.

List Module
The awesome List module provides essential functions to do basic operations on lists:

List.hd: Returns the head of the list.

List.tl: Returns a list without the head of the original list.

List.cons: Appends an element to the head of the list.

List.length: Returns the total number of elements in the list.

List.nth: Returns the nth element of the list.

List.contains?: Return true if a given element exists in the list, else returns false.
List.isEmpty?: Return true if the list does not contain any elements, else returns
false.

8. List.rev: Reverses the given list.

RN

23

Map Module JSJS - PLT Spring 2016

Map Module

The awesome Map module provides essential functions to do basic operations on maps:

Map.set: Adds an entry in a map.

Map.get: Returns a value given the key from a map.
Map.remove: Returns a map after removing key from a map.
Map.clear: Removes all entries of the map.

Ll o

String Module

The String module is provided to assist users with string manipulation:

1. String.length: Returns the length of the string
2. String.concat: Concatenates two strings
3. String.substring: Returns a substring of the given string

IO Module
The I0 module is used to interact with the standard IO

1. I0.print: Display on standard output
2. I0.println: Display on standard output, followed by a new line character.
3. I0.read: Reads contents from standard input.

24

	Introduction
	Comparison with Javascript
	Literals
	Strings
	Maps
	Functions
	Assignments
	Control Flow

	Types
	Primitive Types
	Number
	String
	Boolean
	Unit

	Composite Types
	Lists
	Maps

	Function Types
	Generic Types
	Type Declarations
	Types in AST

	Lexical Conventions
	Comments
	Identifiers
	Value and Function Identifiers
	Module Identifiers

	Keywords
	Separators
	Literals
	Number Literals
	Boolean Literals
	String Literals
	List Literals
	Map Literals

	Operators

	Functions
	Lambdas
	Function Types
	Function Calls and Usage

	Operators
	Arithmetic Operators
	Relational Operators
	Boolean operators
	Assignment Operator
	String operator
	Operator precedence

	Expressions
	Blocks
	if-then-else

	Standard Library Functions
	List Module
	Map Module
	String Module
	IO Module

