
✈
Fly Language
Language Reference Manual

Shenlong Gu, Hsiang-Ho Lin, Carolyn Sun, Xin Xu

sg3301, hl2907, cs3101, xx2168

Introduction
Lexical Conventions

Identifiers
Keywords
Literals
Separators
Operators
Comments

Data Types
Basic Data Types
Collection Data Types
Concurrency Data Types

Keywords
Basic Keywords
Network and Distribute Keywords

Expressions
Assignment Expression

Statements
Expression Statement
Declaration Statement
Control Flow Statement
Loop Statement

Function
Function Definitions
Calling Functions

Scope
Basic Syntax
Network Application

1

Introduction

Fly draws inspiration from Go (golang), with the aim of simplifying the

development of network applications and distributed systems. Fly supports the

concurrent programming features in Go such as goroutine, a light-weight thread, and

channels, which are synchronized FIFO buffers for communication between light-weight

threads. Fly also features asynchronous event-driven programming, type inference and

extensive functional programming features such as lambda, pattern matching, map, and

fold. Furthermore, Fly allows code to be distributed and executed across systems. These

features allow simplified implementation of various types of distributed network services

and parallel computing. We will compile fly language to get the AST and transform it to

C++ code. We believe that the template, shared_ptr, auto, etc keywords, boost network

libraries can make it easy for us to compile our language to the target executable file.

Lexical Conventions

Identifiers

Identifiers in Fly are case-sensitive strings that represent names of different
elements such as integer numbers, classes and functions. Identifiers contain a sequence
of letters, digits and underscore ‘_’, but should always start with a letter.

Keywords

Keywords are case-sensitive sequence of letters reserved for use in Fly language
and cannot be used as identifiers.

Literals

Literals are the source code representation of a value of some primitive types.
Literals include integer literals, float literals, character literals, string literals, boolean
literals.

2

Integer literals are sequence of one or more digits in decimal. For representing
negative numbers, a negation operator is prefixed.

Example: 12

Float literals consist of an integer part, a decimal point and a fraction part. For
representing negative numbers, a negation operator is prefixed.

Example: 3.14159

Character literals consists of an ASCII character quoted by single quotes. Several
special characters are represented with a escape sequence using a backslash
preceding another character.

Example:
‘a’
‘\\’ (backslash)
‘\”’ (double quote)
‘\’’ (single quote)
‘\n’ (new line)
‘\r’ (carriage return)
‘\t’ (tab)

String literals ​are double-quoted sequence of ASCII characters. A string can also
be empty. Special characters in a string is also represented with escape sequence.

Example:
“”
“I love Fly language”
“Fly makes your program \”fly\””

Boolean literals are true and false. The former represent logical true and the
latter is logical false.

Separators

Separators are used in separating tokens. Separators in Fly language include the
following:

() { } [] ; , .

3

Operators

The Fly language consists of the following operators:

Operator Name Associativity

= Assign Right

== Equal to -

!= Unequal to -

> Greater than -

>= Greater than or equal -

< Less than -

<= Less than or equal to -

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

. Access Left

^ Exponentiation Left

% Modulo Left

and Logical AND Left

or Logical OR Left

4

not Logical NOT Right

The precedence of operators is as follows:

.
* / % ^
+ -
> >= < <=
not
and or
== !=
=

Comments

In Fly language, code between ASCII characters /* and */ are regarded as
comments and ignored by Fly compiler. This is a multi-line comment convention as in C
and C++. Fly also

Data Types

Basic Data Types

Name Description

int Integer. Range is from ​-2147483648 to 2147483648

char Characters in ASCII.

bool Boolean value. It can take one of two values: true or false

5

float
Single precision 32-bit floating point number. Range is 3.4E +/- 38 (7

digits)

null

null represents the absence of data

Ex:

if item1 == null {

 //statements }

Collection Data Types

Type Syntax

String

A sequence of characters.
String x = “abc”;

List

List stores a sequence of items, not

necessarily of the same type.

Use indices and square brackets to

access or update the items in the list.

list1 = [1, 3,1,2];

print(list1[1:2]);

list1[3] = 2;

Dict

Dictionary maps each ​key​ to a ​value​, and

optimizes element lookups.

dict1 = <”John”: 17, “Mary”: 22>;

print(dict1[“John”]);

dict1[“Sam”] = 20;

Set

Set is an unordered collection of unique

elements. Elements are enclosed in two

dollar signs.

set1 = Set(“a”, “b”, “c”);

set1.add(“d”);

set1.find(“a”);

6

Concurrency Data Types

Name Syntax

chan
A synchronized FIFO blocking queue.

ch = chan();

ch <- “sa”; //executed in one thread A1

<- ch;

/*executed in thread A2, blocked until

ch <- “sa” is executed in A1*/

signal

A type supporting event-driven

programming. When signal is triggered

inside the routine of another thread, the

callback function being binded will be

executed.

s = fly func1(a, b);

register s send_back;

/* which means after func1(a,b) executed,

the result will be sent to the function

send_back to be executed */

Keywords

Basic Keywords

Keywords Syntax

class

Used for class declaration. It is the same

as what it is in C++.

class MyClass{

 a =0;

 b= []; /* lots of assignments*/

7

 func1(a,b){

 }/* lots of function declaration */

}

for

The for keyword provides a compact way

to iterate over a range of values like what

is in C++.

The second version is designed for

iteration through​ ​collections and arrays.

for (i = 0; i < n; ++i) {print i;}

for (a: elems) {print a;}

while

The while statement allows continual

execution of a block of statements while a

particular condition is true.

while (a < b) { a++; print a;}

if... else...

Allows program to execute a certain

section of code, the codes in the brackets,

only if a particular test in the parenthesis

after the “if” keyword evaluates to true.

The curly braces after “if”, “else if” and

“else” are mandatory.

if () {} else if {} else {}

/* */

Provides ways to comment codes.

The first is "C-style" or "multi-line"

comment.

/*​ comment ​*/

func

Used for function declaration. The

function name follows the func keyword.

The parameters are listed in the

parenthesis.

func abc(type, msg) {

}

8

https://docs.oracle.com/javase/tutorial/collections/index.html

Network and Distribute Keywords

Name Syntax

fly

A goroutine keyword.

The keyword fly will put the function to be

executed in another thread or an event

poll to be executed, which means this

statement is non-blocking and we won’t

wait for the function to finish to execute

next instructions.

func add(a, b) {

return a + b;

}

fly add(2, 4);

add(1,3);

/* add(2, 4) and add(1,3) will concurrently

execute*/

register

An event-driven asynchronous keyword.

We bind a closure with a signal, and when

this signal is triggered, the closure is

executed asynchronously.

register s send_back_to_client(server);

dispatch

A distributed computing keyword.

We dispatch a function with parameters

to be executed in a machine with ip and

port specified. This statement will return a

signal much like usage in Fly keyword, we

can bind a function for asynchronous

execution when the result from func1 is

available.

s = dispatch func1(a, b) “192.168.0.10”

“8888”;

register s func2;

exec exec string;

9

Executing a dispatched function from the

remote system.

The exec keyword is the back-end support

for the dispatching protocol, which

executes the dispatched function with the

parameters.

sync

Making operations to a variable

synchronized

sync a;

fly foo(a);

fly bar(a);

Expressions
An expression is composed of one of the following:

- One of the literal mentioned in the Literals section
- Set, Map, Array definition
- Lambda expressions
- List comprehensions
- Function calls
- Assign expr
- Unary and binary operations between expressions

The following are some special expressions that Fly language supports:

Name Syntax

Lambda Expression

Anonymous functions, functions without

names.

(v1 v2 … vn -> expression)

ex: (x y -> x + y - 1)

Mapping map(function, list);

10

Applying a function to every element in

the list, which returns a list.

ex: map((x -> x + 1), [1, 2, 3]);

List Comprehension

Creating a list based on existing lists.

[expression | variable <- list]

ex: [x + 1 | x <- [1, 2, 3]];

Pattern Matching

Defining computation by case analysis.

match expression with

| pattern​1​ -> expression​1

| pattern​2​ -> expression​2

| pattern​3​ -> expression​3

ex:

match i with

| 1 -> “One”

| 2 -> “Two”

| _ -> “More”;

Fold

A family of higher order functions that

process a data structure in some order

and build a return value.

foldr(function, var, list);

ex: foldr((x y -> x + y), 5, [1,2,3,4]);

Closure

A record storing a function together with

an environment.

closure1 = function v1 v2 … vn

ex:

func sum (a, b) {

 return a + b;

}

sum1 = sum(1);

sum1(2);

11

Assignment Expression

When using assignment to copy a variable, there are some data types that are
immutable and only allows deep copy (copy the actual object in the memory). There are
another group of data types that are mutable so the variable represents the reference to
its object in the memory.

Immutable Data Types: ​int, float, string, bool, char

Mutable Data Types:​ class, map, set, array, chan, signal

Statements
A statement is a unit of code execution.

Expression Statement
An expression statement is an expression followed by a semicolon. An expression

statement causes the expression in the statement to be evaluated.

Declaration Statement
Variables in Fly language follow type inference and the Fly language is statically

typed. When declaring variables, some value must be assigned to it.

Example:
pi = 3.14;
mylist = [];

Control Flow Statement

The if statement is used to execute the block of statements in the if-clause when a

specified condition is met. If the specified condition is not met, the statement is skipped
over until any of the condition is met. If none of the condition is met, the expressions in
the else clause (when specified) will be evaluated.

12

Example:
If (expr) {

stmt_lists;
}
else if (expr) {

stmt_lists;
}
else {

stmt_lists;
}

Loop Statement

The while statement is used to execute a block of code continuously in a loop until

the specified condition is no longer met. If the condition is not met upon initially reaching
the while loop, the code is never executed. The general structure of a while loop is as
follows:

While (expr) {

stmt_lists;
}
for (id : id) {

stmt_lists;
}
for (expr;expr;expr) {

stmt_lists;
}

Function

Function Definitions

A function definition defines executable code that can be invoked, passing a fixed
number of values as parameters. func is the keyword for function definition. func_name

13

is the identifier for the function. The parameters are listed in the parenthesis. The body
of the function is in the braces after the parameter list. A typical function definition is
shown below:

func func_name(parameter1, parameter2, ...){

stmt_list; /* end with return statement or not (which means a void
function */

}

Parameters of primitive data types: int, float, string, bool, and char are passed by
value. Parameters of non-primitive data types: class, map, set, array, chan, and signal are
passed by reference.

See ​Scope​ for the scope of parameters and local variables.

Calling Functions
A member function is declared as a member of a class. It should only be invoked

by an instance of the class in which it is declared, as in

val = obj1.func_name1(parameter1, parameter2,...);

A static function should be invoked with the class name, without the need for
creating an instance of the class, as in

val = func_name2(parameter1, parameter2,...);

Scope

Scope refers to which variables, functions and classes are accessible at a given
point of the program. Broadly speaking, variables can be declared at three places:

1. Local variables are declared inside a function or a block. They can be used only
inside the function or the block.

2. Formal parameters are declared in a function definition. The scope of formal
parameters starts at the beginning of the block defining the function, and persists
through the function.

3. Global variables are declared outside all functions, usually at the top of the
program. They are available throughout the entire program.

14

Variable within its own scope must have consistent type. For example, the
following code has syntax error:

The If-Else statement is inside the scope of a, but a is assigned with values of

different types. The following code is valid, because each a is local to its own block:

15

Basic Syntax

Goroutine Syntax

16

Network Application

 A dispatcher which accepts connection and randomly dispatch computing steps to

one of three other machines.

17

18

